Radial random walks;
hyperbolic spaces;
Jacobi functions;
central limit theorems;
large dimensions;
Bessel convolution;
Jacobi convolution;
CUTOFF PHENOMENON;
HEAT KERNELS;
GRAPHS;
D O I:
10.1142/9789812832825_0020
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let X(p) = G(p)/K(p) be homogeneous spaces with compact subgroups K(p) of locally compact groups G(p) with some dimension parameter p such that the double coset spaces G(p)//K(p) can be identified with some fixed locally compact space X. For the projections T(p) : X(p) -> X, and for a given probability measure nu is an element of M(1)(X) there exist unique "radial", i.e. K(p)-invariant measures nu(p) is an element of M(1)(X(p)) with T(p)(nu(p)) = nu as well as associated radial random walks (S(n)(p))(n) on the homogeneous spaces X(p). We generally ask for limit theorems for the random variables T(p) (S(n)(p)) on X for n, p -> infinity. In particular we give a survey about existing results for the Euclidean spaces X(p) = R(p) with K(p) = SO(p) and X = [0, infinity[ as well as to some matrix extension of this rank one setting. Moreover, we derive a new central limit theorem for the hyperbolic spaces X(p) of dimensions p over the skew fields F = R, C, H.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Csaki, Endre
Csorgo, Miklos
论文数: 0引用数: 0
h-index: 0
机构:
Carleton Univ, Sch Math & Stat, 1125 Colonel Dr, Ottawa, ON K1S 5B6, CanadaHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Csorgo, Miklos
Foldes, Antonia
论文数: 0引用数: 0
h-index: 0
机构:
CUNY Coll Staten Isl, Dept Math, 2800 Victory Blvd, Staten Isl, NY 10314 USAHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Foldes, Antonia
Revesz, Pal
论文数: 0引用数: 0
h-index: 0
机构:
Vienna Univ Technol, Inst Stat & Wahrscheinlichkeitstheorie, Wiedner Hauptstr 8-10-107, A-1040 Vienna, AustriaHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary