Limit theorems for radial random walks on homogeneous spaces with growing dimensions

被引:5
|
作者
Voit, Michael [1 ]
机构
[1] Tech Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
Radial random walks; hyperbolic spaces; Jacobi functions; central limit theorems; large dimensions; Bessel convolution; Jacobi convolution; CUTOFF PHENOMENON; HEAT KERNELS; GRAPHS;
D O I
10.1142/9789812832825_0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X(p) = G(p)/K(p) be homogeneous spaces with compact subgroups K(p) of locally compact groups G(p) with some dimension parameter p such that the double coset spaces G(p)//K(p) can be identified with some fixed locally compact space X. For the projections T(p) : X(p) -> X, and for a given probability measure nu is an element of M(1)(X) there exist unique "radial", i.e. K(p)-invariant measures nu(p) is an element of M(1)(X(p)) with T(p)(nu(p)) = nu as well as associated radial random walks (S(n)(p))(n) on the homogeneous spaces X(p). We generally ask for limit theorems for the random variables T(p) (S(n)(p)) on X for n, p -> infinity. In particular we give a survey about existing results for the Euclidean spaces X(p) = R(p) with K(p) = SO(p) and X = [0, infinity[ as well as to some matrix extension of this rank one setting. Moreover, we derive a new central limit theorem for the hyperbolic spaces X(p) of dimensions p over the skew fields F = R, C, H.
引用
收藏
页码:308 / 326
页数:19
相关论文
共 50 条
  • [31] Spread out random walks on homogeneous spaces
    Prohaska, Roland
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3439 - 3473
  • [32] Random walks on finite volume homogeneous spaces
    Yves Benoist
    Jean-Francois Quint
    Inventiones mathematicae, 2012, 187 : 37 - 59
  • [33] Limit theorems in a boundary crossing problems for random walks
    V. I. Lotov
    Siberian Mathematical Journal, 1999, 40 : 925 - 937
  • [34] Some Limit Theorems for Heights of Random Walks on a Spider
    Endre Csáki
    Miklós Csörgő
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2016, 29 : 1685 - 1709
  • [35] LIMIT-THEOREMS FOR MARKOV RANDOM-WALKS
    TANG, LC
    STATISTICS & PROBABILITY LETTERS, 1993, 18 (04) : 265 - 270
  • [36] LIMIT-THEOREMS FOR STOPPED RANDOM-WALKS
    FARRELL, RH
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03): : 1332 - &
  • [37] Limit theorems and ergodicity for general bootstrap random walks
    Collevecchio, Andrea
    Hamza, Kais
    Shi, Meng
    Williams, Ruth J.
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [38] Strong limit theorems for anisotropic random walks on ℤ2
    Endre Csáki
    Miklós Csörgő
    Antónia Földes
    Pál Révész
    Periodica Mathematica Hungarica, 2013, 67 : 71 - 94
  • [39] Limit theorems for random walks under irregular conductance
    Fukasawa, Masaaki
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2013, 89 (08) : 87 - 91
  • [40] Limit theorems for reinforced random walks on certain trees
    Collevecchio, Andrea
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (01) : 81 - 101