Kesterite CZTS nanocrystals: pH-dependent synthesis

被引:23
|
作者
Suryawanshi, Mahesh [1 ,2 ]
Shin, Seung Wook [3 ]
Bae, Woo R. I. [1 ]
Gurav, Kishor [1 ]
Kang, Myun Gil [1 ]
Agawane, Ganesh [1 ]
Patil, Pramod [2 ]
Yun, Jae Ho [4 ]
Lee, Jeong Yong [3 ]
Moholkar, Annasaheb [2 ]
Kim, Jin Hyeok [1 ]
机构
[1] Chonnam Natl Univ, Photon Technol Res Inst, Dept Mat Sci & Engn, Kwangju 500757, South Korea
[2] Shivaji Univ, Dept Phys, Thin Film Nanomat Lab, Kolhapur 416004, Maharashtra, India
[3] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[4] Korea Inst Energy Res, Solar Energy Dept, Taejon 305323, South Korea
关键词
Cu2ZnSnS4 (CZTS); hydrothermal synthesis; solar cells; thin films; FILM SOLAR-CELLS; CU2ZNSNS4; NANOCRYSTALS; EFFICIENCY;
D O I
10.1002/pssa.201330384
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The kesterite Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were successfully synthesized using a relatively simple and one-step hydrothermal route. The structural, compositional, and optical properties of the kesterite CZTS NCs have been studied in detail. The pH-dependent CZTS phase formation has been elucidated for the first time. The X-ray diffraction and Raman spectroscopy confirmed the formation of a main phase kesterite CZTS structure only at pH 7. However, for pH values (4.3, 5, and 9), the formation of CZTS alongwith few secondary phases like Cu2SnS3 (CTS), Cu2-xS, and SnS2/Sn2S3 have been detected. CZTS NCs of size 10-100 nm were obtained at 200 degrees C and pH 7. The synthesized NCs showed a pH-dependent variation in optical band gap values from 1.15 to 1.44 eV, which is near optimum value for low cost thin film solar cells. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1531 / 1534
页数:4
相关论文
共 50 条
  • [41] PH-DEPENDENT BONDING OF POTASSIUM BY A SPODOSOL
    BARTLETT, RJ
    MCINTOSH, JL
    SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1969, 33 (04): : 535 - &
  • [42] pH-dependent, stereoselective dimerization of sinomenine
    Deng, Zhang-Shuang
    Zhao, Yu
    He, Cui-Cui
    Jin, Jie
    He, Yun-Mian
    Li, Jian-Xin
    ORGANIC LETTERS, 2008, 10 (17) : 3879 - 3882
  • [43] PH-DEPENDENT SUCCESSION OF IRON BACTERIA
    WALSH, F
    MITCHELL, R
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1972, 6 (09) : 809 - &
  • [44] PH-DEPENDENT LIPID SOLUBILITY OF DRUGS
    LEPETIT, G
    PHARMAZIE, 1977, 32 (05): : 289 - 291
  • [45] The pH-Dependent primary photoreactions of Ochratoxin A
    Il'ichev, YV
    Perry, JL
    Manderville, RA
    Chignell, CF
    Simon, JD
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45): : 11369 - 11376
  • [46] pH-dependent kinetics of tuff dissolution
    Silber, A
    Bar-Yosef, B
    Chen, Y
    GEODERMA, 1999, 93 (1-2) : 125 - 140
  • [47] PH-DEPENDENT ASSOCIATION OF PHYCOERYTHRIN SUBUNIT
    FUJIMORI, E
    PECCI, J
    BIOCHIMICA ET BIOPHYSICA ACTA, 1970, 207 (01) : 259 - &
  • [48] pH-Dependent Friction of Polyacrylamide Hydrogels
    Allison L. Chau
    Conor D. Pugsley
    Madeleine E. Miyamoto
    Yongkui Tang
    Claus D. Eisenbach
    Thomas E. Mates
    Craig J. Hawker
    Megan T. Valentine
    Angela A. Pitenis
    Tribology Letters, 2023, 71
  • [49] Modeling pH-Dependent Biomolecular Photochemistry
    Pieri, Elisa
    Weingart, Oliver
    Huix-Rotllant, Miquel
    Ledentu, Vincent
    Garavelli, Marco
    Ferre, Nicolas
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (02) : 842 - 855
  • [50] pH-Dependent Friction of Polyacrylamide Hydrogels
    Chau, Allison L.
    Pugsley, Conor D.
    Miyamoto, Madeleine E.
    Tang, Yongkui
    Eisenbach, Claus D.
    Mates, Thomas E.
    Hawker, Craig J.
    Valentine, Megan T.
    Pitenis, Angela A.
    TRIBOLOGY LETTERS, 2023, 71 (04)