Kesterite CZTS nanocrystals: pH-dependent synthesis

被引:23
|
作者
Suryawanshi, Mahesh [1 ,2 ]
Shin, Seung Wook [3 ]
Bae, Woo R. I. [1 ]
Gurav, Kishor [1 ]
Kang, Myun Gil [1 ]
Agawane, Ganesh [1 ]
Patil, Pramod [2 ]
Yun, Jae Ho [4 ]
Lee, Jeong Yong [3 ]
Moholkar, Annasaheb [2 ]
Kim, Jin Hyeok [1 ]
机构
[1] Chonnam Natl Univ, Photon Technol Res Inst, Dept Mat Sci & Engn, Kwangju 500757, South Korea
[2] Shivaji Univ, Dept Phys, Thin Film Nanomat Lab, Kolhapur 416004, Maharashtra, India
[3] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[4] Korea Inst Energy Res, Solar Energy Dept, Taejon 305323, South Korea
关键词
Cu2ZnSnS4 (CZTS); hydrothermal synthesis; solar cells; thin films; FILM SOLAR-CELLS; CU2ZNSNS4; NANOCRYSTALS; EFFICIENCY;
D O I
10.1002/pssa.201330384
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The kesterite Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were successfully synthesized using a relatively simple and one-step hydrothermal route. The structural, compositional, and optical properties of the kesterite CZTS NCs have been studied in detail. The pH-dependent CZTS phase formation has been elucidated for the first time. The X-ray diffraction and Raman spectroscopy confirmed the formation of a main phase kesterite CZTS structure only at pH 7. However, for pH values (4.3, 5, and 9), the formation of CZTS alongwith few secondary phases like Cu2SnS3 (CTS), Cu2-xS, and SnS2/Sn2S3 have been detected. CZTS NCs of size 10-100 nm were obtained at 200 degrees C and pH 7. The synthesized NCs showed a pH-dependent variation in optical band gap values from 1.15 to 1.44 eV, which is near optimum value for low cost thin film solar cells. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1531 / 1534
页数:4
相关论文
共 50 条
  • [31] Synthesis and pH-dependent micellization of sulfonamide-modified diblock copolymer
    Pal, RR
    Kim, MS
    Lee, DS
    MACROMOLECULAR RESEARCH, 2005, 13 (06) : 467 - 476
  • [32] Rapid hydrothermal synthesis and pH-dependent photocatalysis of strontium titanate microspheres
    Mourao, Henrique A. J. L.
    Lopes, Osmando F.
    Ribeiro, Caue
    Mastelaro, Valmor R.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 30 : 651 - 657
  • [33] Synthesis and properties of pH-dependent Gemini surfactant containing tripeptide structure
    Han, Fu
    Song, Ziyu
    Cao, Tianyu
    Guo, Mingmin
    JOURNAL OF SURFACTANTS AND DETERGENTS, 2025, 28 (01) : 189 - 199
  • [34] (E)-(Hydroxyimino)(hydroxymethoxyphosphinyl)acetic acid: Synthesis and pH-dependent fragmentation
    Kashemirov, BA
    Fujimoto, M
    McKenna, CE
    TETRAHEDRON LETTERS, 1995, 36 (52) : 9437 - 9440
  • [35] pH-dependent isomerism of (Iso)thioureidomethylenebisphosphonates
    A. L. Chuiko
    L. P. Filonenko
    A. N. Borisevich
    M. O. Lozinskii
    Russian Journal of General Chemistry, 2009, 79 : 72 - 77
  • [36] A PH-DEPENDENT DISSOCIATION OF POLIOVIRUS PROCAPSIDS
    ROMBAUT, B
    VRIJSEN, R
    BOEYE, A
    VIROLOGY, 1987, 157 (01) : 245 - 247
  • [37] A QUANTITATIVE CHARACTERIZATION OF PH-DEPENDENT SYSTEMS
    CRATIN, PD
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1969, 61 (02): : 35 - &
  • [38] Subcellular pH and predicted pH-dependent features of proteins
    Chan, Pedro
    Lovric, Josip
    Warwicker, Jim
    PROTEOMICS, 2006, 6 (12) : 3494 - 3501
  • [39] pH-dependent regulation of myeloperoxidase activity
    I. I. Vlasova
    J. Arnhold
    A. N. Osipov
    O. M. Panasenko
    Biochemistry (Moscow), 2006, 71 : 667 - 677
  • [40] PH-DEPENDENT ZINC ADSORPTION BY SOILS
    BARYOSEF, B
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1979, 43 (06) : 1095 - 1099