Salient object detection via local saliency estimation and global homogeneity refinement

被引:31
|
作者
Yeh, Hsin-Ho [1 ]
Liu, Keng-Hao [1 ]
Chen, Chu-Song [1 ,2 ]
机构
[1] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[2] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
关键词
Salient object detection; Local contrast; Global homogeneity; VISUAL-ATTENTION; MODEL;
D O I
10.1016/j.patcog.2013.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new hybrid approach for detecting salient objects in an image. It consists of two processes: local saliency estimation and global-homogeneity refinement. We model the salient object detection problem as a region growing and competition process by propagating the influence of foreground and background seed-patches. First, the initial local saliency of each image patch is measured by fusing local contrasts with spatial priors, thereby the seed-patches of foreground and background are constructed. Later, the global-homogeneous information is utilized to refine the saliency results by evaluating the ratio of the foreground and background likelihoods propagated from the seed-patches. Despite the idea is simple, our method can effectively achieve consistent performance for detecting object saliency. The experimental results demonstrate that our proposed method can accomplish remarkable precision and recall rates with good computational efficiency. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1740 / 1750
页数:11
相关论文
共 50 条
  • [41] A Multistage Refinement Network for Salient Object Detection
    Zhang, Lihe
    Wu, Jie
    Wang, Tiantian
    Borji, Ali
    Wei, Guohua
    Lu, Huchuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3534 - 3545
  • [42] Saliency detection by selective strategy for salient object segmentation
    Deng, Qiang
    Luo, Yupin
    Journal of Multimedia, 2012, 7 (06): : 420 - 428
  • [43] Saliency ranker: A new salient object detection method
    Li, Zun
    Lang, Congyan
    Feng, Songhe
    Wang, Tao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 50 : 16 - 26
  • [44] Saliency Region and Density Maximization for Salient Object Detection
    He, Xin
    Jing, Huiyun
    SIXTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2014), 2015, 9443
  • [45] Automatic salient object detection via maximum entropy estimation
    Chen, Xiao
    Zhao, Hongwei
    Liu, Pingping
    Zhou, Baoyu
    Ren, Weiwu
    OPTICS LETTERS, 2013, 38 (10) : 1727 - 1729
  • [46] Improving Video Saliency Detection via Localized Estimation and Spatiotemporal Refinement
    Zhou, Xiaofei
    Liu, Zhi
    Gong, Chen
    Liu, Wei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (11) : 2993 - 3007
  • [47] Co-Saliency Detection via Co-Salient Object Discovery and Recovery
    Ye, Linwei
    Liu, Zhi
    Li, Junhao
    Zhao, Wan-Lei
    Shen, Liquan
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 2073 - 2077
  • [48] Object localization and edge refinement network for salient object detection
    Yao, Zhaojian
    Wang, Luping
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [49] Salient object detection based on global to local visual search guidance
    Wu, Yangxi
    Zhang, Dongbo
    Yin, Feng
    Zhang, Ying
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 102
  • [50] Salient object detection by local and global manifold regularized SVM model
    Zhang, Lihe
    Zhang, Dandan
    Sun, Jiayu
    Wei, Guohua
    Bo, Hongguang
    NEUROCOMPUTING, 2019, 340 : 42 - 54