Salient object detection via local saliency estimation and global homogeneity refinement

被引:31
|
作者
Yeh, Hsin-Ho [1 ]
Liu, Keng-Hao [1 ]
Chen, Chu-Song [1 ,2 ]
机构
[1] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[2] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
关键词
Salient object detection; Local contrast; Global homogeneity; VISUAL-ATTENTION; MODEL;
D O I
10.1016/j.patcog.2013.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new hybrid approach for detecting salient objects in an image. It consists of two processes: local saliency estimation and global-homogeneity refinement. We model the salient object detection problem as a region growing and competition process by propagating the influence of foreground and background seed-patches. First, the initial local saliency of each image patch is measured by fusing local contrasts with spatial priors, thereby the seed-patches of foreground and background are constructed. Later, the global-homogeneous information is utilized to refine the saliency results by evaluating the ratio of the foreground and background likelihoods propagated from the seed-patches. Despite the idea is simple, our method can effectively achieve consistent performance for detecting object saliency. The experimental results demonstrate that our proposed method can accomplish remarkable precision and recall rates with good computational efficiency. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1740 / 1750
页数:11
相关论文
共 50 条
  • [21] Rethinking Image Salient Object Detection: Object-Level Semantic Saliency Reranking First, Pixelwise Saliency Refinement Later
    Ma, Guangxiao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4238 - 4252
  • [22] Saliency Hierarchy Modeling via Generative Kernels for Salient Object Detection
    Zhang, Wenhu
    Zheng, Liangli
    Wang, Huanyu
    Wu, Xintian
    Li, Xi
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 570 - 587
  • [23] Weakly-Supervised Saliency Detection via Salient Object Subitizing
    Zheng, Xiaoyang
    Tan, Xin
    Zhou, Jie
    Ma, Lizhuang
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4370 - 4380
  • [24] Salient Object Detection by Fusing Local and Global Contexts
    Ren, Qinghua
    Lu, Shijian
    Zhang, Jinxia
    Hu, Renjie
    IEEE Transactions on Multimedia, 2021, 23 : 1442 - 1453
  • [25] Salient Object Detection by Fusing Local and Global Contexts
    Ren, Qinghua
    Lu, Shijian
    Zhang, Jinxia
    Hu, Renjie
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1442 - 1453
  • [26] Local to Global Feature Learning for Salient Object Detection
    Feng, Xuelu
    Zhou, Sanping
    Zhu, Zixin
    Wang, Le
    Hua, Gang
    PATTERN RECOGNITION LETTERS, 2022, 162 : 81 - 88
  • [27] Salient detection via local and global feature
    Cai Q.
    Hao J.-Y.
    Cao J.
    Li H.-S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2017, 25 (03): : 772 - 778
  • [28] A robust salient object detection using edge enhanced global topographical saliency
    Singh, Surya Kant
    Srivastava, Rajeev
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (25-26) : 17885 - 17902
  • [29] A robust salient object detection using edge enhanced global topographical saliency
    Surya Kant Singh
    Rajeev Srivastava
    Multimedia Tools and Applications, 2020, 79 : 17885 - 17902
  • [30] Salient object detection via a local and global method based on deep residual network
    Zhu, Dandan
    Luo, Ye
    Dai, Lei
    Shao, Xuan
    Zhou, Qiangqiang
    Itti, Laurent
    Lu, Jianwei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 54 : 1 - 9