Numerical analysis of a nonlinear time relaxation model of fluids

被引:6
|
作者
Dunca, Argus A. [1 ]
Neda, Monika [2 ]
机构
[1] Spiru Haret Univ, Dept Math & Comp Sci, Bucharest 030045, Romania
[2] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Time relaxation; Deconvolution; Finite element; LARGE-EDDY SIMULATION; DECONVOLUTION MODEL; MAXIMUM-NORM; STABILITY; ERROR;
D O I
10.1016/j.jmaa.2014.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This report investigates a time relaxation model for the regularization of the strong solution of the Navier-Stokes equations. Following the earlier works of Adams, Stolz and Kleiser [37,38], Ervin, Layton and Neda [11], Layton and Neda [26], the nonlinear term investigated herein aims to better control the generalized turbulent fluctuations, thus providing better stabilization effect on the underlying model. We study the numerical properties of the resulting model and prove that the addition of the nonlinear term does not affect the overall order of convergence to the strong solution of the Navier Stokes equation. Our theoretical results based on the finite element method are confirmed by the numerical tests performed in the last section of the paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1095 / 1115
页数:21
相关论文
共 50 条
  • [1] Numerical analysis of a higher order time relaxation model of fluids
    Ervin, Vincent J.
    Layton, William J.
    Neda, Monika
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2007, 4 (3-4) : 648 - 670
  • [2] On the long time behavior of time relaxation model of fluids
    Pakzad, Ali
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 408 (408)
  • [3] Numerical analysis and computations of a high accuracy time relaxation fluid flow model
    De, Shipra
    Hannasch, David
    Neda, Monika
    Nikonova, Elena
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (17) : 2353 - 2373
  • [4] NUMERICAL STABILITY OF DYNAMIC RELAXATION ANALYSIS OF NONLINEAR STRUCTURES
    CASSELL, AC
    HOBBS, RE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1976, 10 (06) : 1407 - 1410
  • [5] Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids
    Vanhille, C
    Campos-Pozuelo, C
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2001, 109 (06): : 2660 - 2667
  • [6] Multiple-relaxation-time lattice Boltzmann model for compressible fluids
    Chen, Feng
    Xu, Aiguo
    Zhang, Guangcai
    Li, Yingjun
    PHYSICS LETTERS A, 2011, 375 (21) : 2129 - 2139
  • [7] Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio
    TAO JIANG
    QIWEI GONG
    RUOFAN QIU
    ANLIN WANG
    Pramana, 2014, 83 : 557 - 570
  • [8] Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio
    Jiang, Tao
    Gong, Qiwei
    Qiu, Ruofan
    Wang, Anlin
    PRAMANA-JOURNAL OF PHYSICS, 2014, 83 (04): : 557 - 570
  • [9] Numerical model for nonlinear analysis of masonry walls
    Campbell, Jaime
    Duran, Mario
    REVISTA DE LA CONSTRUCCION, 2017, 16 (02): : 189 - 201
  • [10] Analysis of the Palierne model by relaxation time spectrum
    Kwon, Mi Kyung
    Cho, Kwang Soo
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2016, 28 (01) : 23 - 31