Numerical analysis of a nonlinear time relaxation model of fluids

被引:6
|
作者
Dunca, Argus A. [1 ]
Neda, Monika [2 ]
机构
[1] Spiru Haret Univ, Dept Math & Comp Sci, Bucharest 030045, Romania
[2] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Time relaxation; Deconvolution; Finite element; LARGE-EDDY SIMULATION; DECONVOLUTION MODEL; MAXIMUM-NORM; STABILITY; ERROR;
D O I
10.1016/j.jmaa.2014.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This report investigates a time relaxation model for the regularization of the strong solution of the Navier-Stokes equations. Following the earlier works of Adams, Stolz and Kleiser [37,38], Ervin, Layton and Neda [11], Layton and Neda [26], the nonlinear term investigated herein aims to better control the generalized turbulent fluctuations, thus providing better stabilization effect on the underlying model. We study the numerical properties of the resulting model and prove that the addition of the nonlinear term does not affect the overall order of convergence to the strong solution of the Navier Stokes equation. Our theoretical results based on the finite element method are confirmed by the numerical tests performed in the last section of the paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1095 / 1115
页数:21
相关论文
共 50 条
  • [21] Numerical analysis of finite element method for a stochastic active fluids model
    Li, Haozheng
    Wang, Bo
    Zou, Guang-an
    APPLIED NUMERICAL MATHEMATICS, 2024, 201 : 217 - 246
  • [22] Nonlinear Behavior of Magnetic Fluid in Brownian Relaxation: Numerical Simulation and Derivation of Empirical Model
    Yoshida, Takashi
    Enpuku, Keiji
    MAGNETIC PARTICLE IMAGING: A NOVEL SPIO NANOPARTICLE IMAGING TECHNIQUE, 1ST EDITION, 2012, 140 : 9 - 13
  • [23] Numerical evaluation of an energy relaxation method for inviscid real fluids
    Lab. d'Analyse Numérique, Univ.´ Pierre et Marie Curie, Tour 55-65, 75252 Paris Cedex 05, France
    不详
    Siam J. Sci. Comput., 1 (340-365):
  • [24] Numerical evaluation of an energy relaxation method for inviscid real fluids
    In, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01): : 340 - 365
  • [25] A discrete-time nonlinear Wiener model for the relaxation of soft biological tissues
    Quaglini, V
    Previdi, F
    Contro, R
    Bittanti, S
    MEDICAL ENGINEERING & PHYSICS, 2002, 24 (01) : 9 - 19
  • [26] A numerical formulation for nonlinear ultrasonic waves propagation in fluids
    Vanhille, C
    Campos-Pozuelo, C
    ULTRASONICS, 2004, 42 (10) : 1123 - 1128
  • [27] INTERACTION OF NONLINEAR NUMERICAL MODEL OF SFRC SLAB AND NONLINEAR NUMERICAL SUBSOIL MODEL
    Vaskova, Jana
    Cajka, Radim
    INTERNATIONAL JOURNAL OF GEOMATE, 2018, 15 (47): : 103 - 110
  • [28] On Maxwell fluids with relaxation time and viscosity depending on the pressure
    Karra, Satish
    Prusa, Vit
    Rajagopal, K. R.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (06) : 819 - 827
  • [29] Nonlinear analysis of a reduced-order model with relaxation effects for BWRs
    Espinosa-Paredes, Gilberto
    Sanchez-Romero, Miguel I.
    Herrera-Hernandez, Erik C.
    PROGRESS IN NUCLEAR ENERGY, 2019, 117
  • [30] Numerical investigations for time-fractional nonlinear model arise in physics
    Jaradat, Ali
    Noorani, Mohd Salmi Md
    Alquran, Marwan
    Jaradat, H. M.
    RESULTS IN PHYSICS, 2018, 8 : 1034 - 1037