Enhanced (-)--Bisabolol Productivity by Efficient Conversion of Mevalonate in Escherichia coli

被引:11
|
作者
Kim, Soo-Jung [1 ]
Kim, Seong Keun [1 ]
Seong, Wonjae [1 ,2 ]
Woo, Seung-Gyun [1 ,2 ]
Lee, Hyewon [1 ]
Yeom, Soo-Jin [1 ]
Kim, Haseong [1 ,2 ]
Lee, Dae-Hee [1 ,2 ]
Lee, Seung-Goo [1 ,2 ]
机构
[1] KRIBB, Synthet Biol & Bioengn Res Ctr, Daejeon 34141, South Korea
[2] UST, Dept Biosyst & Bioengn, KRIBB Sch Biotechnol, Daejeon 34113, South Korea
来源
CATALYSTS | 2019年 / 9卷 / 05期
基金
新加坡国家研究基金会;
关键词
(-)--bisabolol; mevalonate (MVA); mevalonate kinase 1; Methanosarcina mazei; fed-batch fermentation; STAPHYLOCOCCUS-AUREUS; PATHWAY OPTIMIZATION; (-)-ALPHA-BISABOLOL; BIOSYNTHESIS; BISABOLOL; KINASE; ENZYME; OIL;
D O I
10.3390/catal9050432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
(-)--Bisabolol, a naturally occurring sesquiterpene alcohol, has been used in pharmaceuticals and cosmetics owing to its beneficial effects on inflammation and skin healing. Previously, we reported the high production of (-)--bisabolol by fed-batch fermentation using engineered Escherichia coli (E. coli) expressing the exogenous mevalonate (MVA) pathway genes. The productivity of (-)--bisabolol must be improved before industrial application. Here, we report enhancement of initial (-)--bisabolol productivity to 3-fold higher than that observed in our previous study. We first harnessed a farnesyl pyrophosphate (FPP)-resistant mevalonate kinase 1 (MvaK1) from an archaeon Methanosarcina mazei (M. mazei) to create a more efficient heterologous MVA pathway that produces (-)--bisabolol in the engineered E. coli. The resulting strain produced 1.7-fold higher (-)--bisabolol relative to the strain expressing a feedback-inhibitory MvaK1 from Staphylococcus aureus (S. aureus). Next, to efficiently convert accumulated MVA to (-)--bisabolol, we additionally overexpressed genes involved in the lower MVA mevalonate pathway in E. coli containing the entire MVA pathway genes. (-)--Bisabolol production increased by 1.8-fold with reduction of MVA accumulation, relative to the control strain. Finally, we optimized the fermentation conditions including inducer concentration, aeration and enzymatic cofactor. The strain was able to produce 8.5 g/L of (-)--bisabolol with an initial productivity of 0.12 g/L h in the optimal fed-batch fermentation. Thus, the microbial production of (-)--bisabolol would be an economically viable bioprocess for its industrial application.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Efficient production of indigoidine in Escherichia coli
    Xu, Fuchao
    Gage, David
    Zhan, Jixun
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (08) : 1149 - 1155
  • [42] Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli (vol 15, 185, 2016)
    Han, Gui Hwan
    Kim, Seong Keun
    Yoon, Paul Kyung-Seok
    Kang, Younghwan
    Kim, Byoung Su
    Fu, Yaoyao
    Sung, Bong Hyun
    Jung, Heung Chae
    Lee, Dae-Hee
    Kim, Seon-Won
    Lee, Seung-Goo
    MICROBIAL CELL FACTORIES, 2017, 16
  • [43] Increased Mevalonate Production Using Engineered Citrate Synthase and Phosphofructokinase Variants of Escherichia coli
    Dodelin, Jeffrey K.
    Rose, Abigail E.
    Rajpurohit, Hemshikha
    Eiteman, Mark A.
    BIOTECHNOLOGY AND BIOENGINEERING, 2025, 122 (03) : 548 - 560
  • [44] Transcriptional Tuning of Mevalonate Pathway Enzymes to Identify the Impact on Limonene Production in Escherichia coli
    Shin, Jonghyeon
    South, Eric J.
    Dunlop, Mary J.
    ACS OMEGA, 2022, 7 (22): : 18331 - 18338
  • [45] Optimization of mevalonate production using acetate by precursor balancing and flux redistribution in Escherichia coli
    Jeung, Kumyoung
    Kim, Seungjin
    Lee, Ji Yeon
    Jung, Gyoo Yeol
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 120 : 421 - 428
  • [46] Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli
    Yang, Chen
    Gao, Xiang
    Jiang, Yu
    Sun, Bingbing
    Gao, Fang
    Yang, Sheng
    METABOLIC ENGINEERING, 2016, 37 : 79 - 91
  • [47] Microbial production of mevalonate by recombinant Escherichia coli using acetic acid as a carbon source
    Xu, Xin
    Xie, Meng
    Zhao, Qian
    Xian, Mo
    Liu, Huizhou
    BIOENGINEERED, 2018, 9 (01) : 116 - 123
  • [48] Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis
    Nagai, Hikaru
    Masuda, Ami
    Toya, Yoshihiro
    Matsuda, Fumio
    Shimizu, Hiroshi
    METABOLIC ENGINEERING, 2018, 47 : 1 - 9
  • [49] Syntrophic co-culture of a methanotroph and heterotroph for the efficient conversion of methane to mevalonate
    Lee, Hyewon
    Baek, Ji In
    Lee, Jin-Young
    Jeong, Jiyeong
    Kim, Haseong
    Lee, Dae-Hee
    Kim, Dong-Myung
    Lee, Seung-Goo
    METABOLIC ENGINEERING, 2021, 67 : 285 - 292
  • [50] Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli
    Overhage, J
    Steinbüchel, A
    Priefert, H
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (11) : 6569 - 6576