Enhanced (-)--Bisabolol Productivity by Efficient Conversion of Mevalonate in Escherichia coli

被引:11
|
作者
Kim, Soo-Jung [1 ]
Kim, Seong Keun [1 ]
Seong, Wonjae [1 ,2 ]
Woo, Seung-Gyun [1 ,2 ]
Lee, Hyewon [1 ]
Yeom, Soo-Jin [1 ]
Kim, Haseong [1 ,2 ]
Lee, Dae-Hee [1 ,2 ]
Lee, Seung-Goo [1 ,2 ]
机构
[1] KRIBB, Synthet Biol & Bioengn Res Ctr, Daejeon 34141, South Korea
[2] UST, Dept Biosyst & Bioengn, KRIBB Sch Biotechnol, Daejeon 34113, South Korea
来源
CATALYSTS | 2019年 / 9卷 / 05期
基金
新加坡国家研究基金会;
关键词
(-)--bisabolol; mevalonate (MVA); mevalonate kinase 1; Methanosarcina mazei; fed-batch fermentation; STAPHYLOCOCCUS-AUREUS; PATHWAY OPTIMIZATION; (-)-ALPHA-BISABOLOL; BIOSYNTHESIS; BISABOLOL; KINASE; ENZYME; OIL;
D O I
10.3390/catal9050432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
(-)--Bisabolol, a naturally occurring sesquiterpene alcohol, has been used in pharmaceuticals and cosmetics owing to its beneficial effects on inflammation and skin healing. Previously, we reported the high production of (-)--bisabolol by fed-batch fermentation using engineered Escherichia coli (E. coli) expressing the exogenous mevalonate (MVA) pathway genes. The productivity of (-)--bisabolol must be improved before industrial application. Here, we report enhancement of initial (-)--bisabolol productivity to 3-fold higher than that observed in our previous study. We first harnessed a farnesyl pyrophosphate (FPP)-resistant mevalonate kinase 1 (MvaK1) from an archaeon Methanosarcina mazei (M. mazei) to create a more efficient heterologous MVA pathway that produces (-)--bisabolol in the engineered E. coli. The resulting strain produced 1.7-fold higher (-)--bisabolol relative to the strain expressing a feedback-inhibitory MvaK1 from Staphylococcus aureus (S. aureus). Next, to efficiently convert accumulated MVA to (-)--bisabolol, we additionally overexpressed genes involved in the lower MVA mevalonate pathway in E. coli containing the entire MVA pathway genes. (-)--Bisabolol production increased by 1.8-fold with reduction of MVA accumulation, relative to the control strain. Finally, we optimized the fermentation conditions including inducer concentration, aeration and enzymatic cofactor. The strain was able to produce 8.5 g/L of (-)--bisabolol with an initial productivity of 0.12 g/L h in the optimal fed-batch fermentation. Thus, the microbial production of (-)--bisabolol would be an economically viable bioprocess for its industrial application.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Efficient Conversion of Acetate to 3-Hydroxypropionic Acid by Engineered Escherichia coli
    Lee, Ji Hoon
    Cha, Sanghak
    Kang, Chae Won
    Lee, Geon Min
    Lim, Hyun Gyu
    Jung, Gyoo Yeol
    CATALYSTS, 2018, 8 (11):
  • [22] Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
    Yazdani, Syed Shams
    Gonzalez, Ramon
    METABOLIC ENGINEERING, 2008, 10 (06) : 340 - 351
  • [23] Farnesol Production From Escherichia coli by Harnessing the Exogenous Mevalonate Pathway
    Wang, Chonglong
    Yoon, Sang-Hwal
    Shah, Asad Ali
    Chung, Young-Ryun
    Kim, Jae-Yean
    Choi, Eui-Sung
    Keasling, Jay D.
    Kim, Seon-Won
    BIOTECHNOLOGY AND BIOENGINEERING, 2010, 107 (03) : 421 - 429
  • [24] Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli
    Masuda, Ami
    Toya, Yoshihiro
    Shimizu, Hiroshi
    BIORESOURCE TECHNOLOGY, 2017, 245 : 1634 - 1640
  • [25] Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production
    Yang, Liyang
    Wang, Chonglong
    Zhou, Jia
    Kim, Seon-Won
    MICROBIAL CELL FACTORIES, 2016, 15
  • [26] Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
    Pitera, Douglas J.
    Paddon, Chris J.
    Newman, Jack D.
    Keasling, Jay D.
    METABOLIC ENGINEERING, 2007, 9 (02) : 193 - 207
  • [27] (-)-α-Bisabolol Production in Engineered Escherichia coli Expressing a Novel (-)-α-Bisabolol Synthase from the Globe Artichoke Cynara cardunculus var. Scolymus
    Lim, Hyun Seung
    Kim, Seong Keun
    Woo, Seung-Gyun
    Kim, Tae Hyun
    Yeom, Soo-Jin
    Yong, Wonshik
    Ko, Yoon-Joo
    Kim, Soo-Jung
    Lee, Seung-Goo
    Lee, Dae-Hee
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (30) : 8492 - 8503
  • [28] GENE CONVERSION IN ESCHERICHIA-COLI
    YAMAMOTO, K
    YOSHIKURA, H
    TAKAHASHI, N
    KOBAYASHI, I
    JAPANESE JOURNAL OF GENETICS, 1987, 62 (06): : 566 - 566
  • [29] Engineering Escherichia coli for methanol conversion
    Mueller, Jonas E. N.
    Meyer, Fabian
    Litsanov, Boris
    Kiefer, Patrick
    Potthoff, Eva
    Heux, Stephanie
    Quax, Wim J.
    Wendisch, Volker F.
    Brautaset, Trygve
    Portais, Jean-Charles
    Vorholt, Julia A.
    METABOLIC ENGINEERING, 2015, 28 : 190 - 201
  • [30] Enhanced Metabolite Productivity of Escherichia coli Adapted to Glucose M9 Minimal Medium
    Rugbjerg, Peter
    Feist, Adam M.
    Sommer, Morten Otto Alexander
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6