Differential diagnosis of thyroid nodule capsules using random forest guided selection of image features

被引:6
|
作者
Eftimie, Lucian G. [1 ,2 ]
Glogojeanu, Remus R. [3 ]
Tejaswee, A. [4 ]
Gheorghita, Pavel [5 ]
Stanciu, Stefan G. [1 ]
Chirila, Augustin [2 ]
Stanciu, George A. [1 ]
Paul, Angshuman [4 ]
Hristu, Radu [1 ]
机构
[1] Univ Politehn Bucuresti, Ctr Microscopy Microanal & Informat Proc, 313 Splaiul Independentei, Bucharest 060042, Romania
[2] Cent Univ Emergency Mil Hosp, Pathol Dept, 134 Calea Plevnei, Bucharest 010825, Romania
[3] Natl Univ Phys Educ & Sports, Dept Special Motr & Med Recovery, 140 Constantin Noica, Bucharest 060057, Romania
[4] Indian Inst Technol Jodhpur, Dept Comp Sci & Engn, Jodhpur, India
[5] Univ Politehn Bucuresti, Fac Energet, 313 Splaiul Independentei, Bucharest 060042, Romania
来源
SCIENTIFIC REPORTS | 2022年 / 12卷 / 01期
关键词
CLASSIFICATION; MICROSCOPY; SEGMENTATION; CARCINOMA; COLLAGEN; SCORE;
D O I
10.1038/s41598-022-25788-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microscopic evaluation of tissue sections stained with hematoxylin and eosin is the current gold standard for diagnosing thyroid pathology. Digital pathology is gaining momentum providing the pathologist with additional cues to traditional routes when placing a diagnosis, therefore it is extremely important to develop new image analysis methods that can extract image features with diagnostic potential. In this work, we use histogram and texture analysis to extract features from microscopic images acquired on thin thyroid nodule capsules sections and demonstrate how they enable the differential diagnosis of thyroid nodules. Targeted thyroid nodules are benign (i.e., follicular adenoma) and malignant (i.e., papillary thyroid carcinoma and its sub-type arising within a follicular adenoma). Our results show that the considered image features can enable the quantitative characterization of the collagen capsule surrounding thyroid nodules and provide an accurate classification of the latter's type using random forest.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] FEATURE SELECTION AND THYROID NODULE CLASSIFICATION USING TRANFER LEARNING
    Liu, Tianjiao
    Xie, Shuaining
    Zhang, Yukang
    Yu, Jing
    Niu, Lijuan
    Sun, Weidong
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1096 - 1099
  • [22] Solitary necrotic nodule of the liver: imaging features, differential diagnosis and management
    Asmundo, Luigi
    Giaccardi, Luca
    Soro, Alberto
    Lanocita, Rodolfo
    Buonomenna, Ciriaco
    Vigorito, Raffaella
    Leoncini, Giuseppe
    Mazzaferro, Vincenzo
    Vaiani, Marta
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 183
  • [23] Image Segmentation Using Random Features
    Bull, Geoff
    Gao, Junbin
    Antolovich, Michael
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [25] Cell image classification based on ensemble features and random forest
    Ko, B. C.
    Gim, J. W.
    Nam, J. Y.
    ELECTRONICS LETTERS, 2011, 47 (11) : 638 - U72
  • [26] A Guided Random Forest based Feature Selection Approach for Activity Recognition
    Uddin, Md. Taufeeq
    Uddin, Md. Azher
    2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION COMMUNICATION TECHNOLOGY (ICEEICT 2015), 2015,
  • [27] Consistent and unbiased variable selection under indepedent features using Random Forest permutation importance
    Ramosaj, Burim
    Pauly, Markus
    BERNOULLI, 2023, 29 (03) : 2101 - 2118
  • [28] Classification of cardiotocograms using random forest classifier and selection of important features from cardiotocogram signal
    Arif, Muhammad
    BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING, 2015, 2 (03): : 173 - 183
  • [29] Feature Extraction and Analysis for Lung Nodule Classification using Random Forest
    El-Askary, Nada S.
    Salem, Mohammed A-M
    Roushdy, Mohamed, I
    PROCEEDINGS OF 2019 8TH INTERNATIONAL CONFERENCE ON SOFTWARE AND INFORMATION ENGINEERING (ICSIE 2019), 2019, : 248 - 252
  • [30] The usefulness of sonographic features in selection of thyroid nodules for biopsy in relation to the nodule's size
    Popowicz, Bozena
    Klencki, Mariusz
    Lewinski, Andrzej
    Slowinska-Klencka, Dorota
    EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2009, 161 (01) : 103 - 111