Differential diagnosis of thyroid nodule capsules using random forest guided selection of image features

被引:6
|
作者
Eftimie, Lucian G. [1 ,2 ]
Glogojeanu, Remus R. [3 ]
Tejaswee, A. [4 ]
Gheorghita, Pavel [5 ]
Stanciu, Stefan G. [1 ]
Chirila, Augustin [2 ]
Stanciu, George A. [1 ]
Paul, Angshuman [4 ]
Hristu, Radu [1 ]
机构
[1] Univ Politehn Bucuresti, Ctr Microscopy Microanal & Informat Proc, 313 Splaiul Independentei, Bucharest 060042, Romania
[2] Cent Univ Emergency Mil Hosp, Pathol Dept, 134 Calea Plevnei, Bucharest 010825, Romania
[3] Natl Univ Phys Educ & Sports, Dept Special Motr & Med Recovery, 140 Constantin Noica, Bucharest 060057, Romania
[4] Indian Inst Technol Jodhpur, Dept Comp Sci & Engn, Jodhpur, India
[5] Univ Politehn Bucuresti, Fac Energet, 313 Splaiul Independentei, Bucharest 060042, Romania
来源
SCIENTIFIC REPORTS | 2022年 / 12卷 / 01期
关键词
CLASSIFICATION; MICROSCOPY; SEGMENTATION; CARCINOMA; COLLAGEN; SCORE;
D O I
10.1038/s41598-022-25788-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microscopic evaluation of tissue sections stained with hematoxylin and eosin is the current gold standard for diagnosing thyroid pathology. Digital pathology is gaining momentum providing the pathologist with additional cues to traditional routes when placing a diagnosis, therefore it is extremely important to develop new image analysis methods that can extract image features with diagnostic potential. In this work, we use histogram and texture analysis to extract features from microscopic images acquired on thin thyroid nodule capsules sections and demonstrate how they enable the differential diagnosis of thyroid nodules. Targeted thyroid nodules are benign (i.e., follicular adenoma) and malignant (i.e., papillary thyroid carcinoma and its sub-type arising within a follicular adenoma). Our results show that the considered image features can enable the quantitative characterization of the collagen capsule surrounding thyroid nodules and provide an accurate classification of the latter's type using random forest.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Diagnosis of thyroid nodules for ultrasonographic characteristics indicative of malignancy using random forest
    Chen, Dan
    Hu, Jun
    Zhu, Mei
    Tang, Niansheng
    Yang, Yang
    Feng, Yuran
    BIODATA MINING, 2020, 13 (01)
  • [12] Diagnosis of thyroid nodules for ultrasonographic characteristics indicative of malignancy using random forest
    Dan Chen
    Jun Hu
    Mei Zhu
    Niansheng Tang
    Yang Yang
    Yuran Feng
    BioData Mining, 13
  • [13] Features Selection in Character Recognition with Random Forest Classifier
    Homenda, Wladyslaw
    Lesinski, Wojciech
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT I, 2011, 6922 : 93 - +
  • [14] Ultrasound-guided thyroid nodule biopsy: outcomes and correlation with imaging features
    Zhang, Junwei
    Chen, Zhaojin
    Anil, Gopinathan
    CLINICAL IMAGING, 2015, 39 (02) : 200 - 206
  • [15] Early Diagnosis of Mild Cognitive Impairment Using Random Forest Feature Selection
    Forouzannezhad, Parisa
    Abbaspour, Alireza
    Cabrerizo, Mercedes
    Adjouadi, Malek
    2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 133 - 136
  • [16] Random Forest Feature Selection Approach for Image Segmentation
    Lefkovits, Laszlo
    Lefkovits, Szidonia
    Emerich, Simina
    Vaida, Mircea Florin
    NINTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2016), 2017, 10341
  • [17] Image classification using boosted local features with random orientation and location selection
    Zhang, Chunjie
    Cheng, Jian
    Zhang, Yifan
    Liu, Jing
    Liang, Chao
    Pang, Junbiao
    Huang, Qingming
    Tian, Qi
    INFORMATION SCIENCES, 2015, 310 : 118 - 129
  • [18] Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features
    Du, Peijun
    Samat, Alim
    Waske, Bjoern
    Liu, Sicong
    Li, Zhenhong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 105 : 38 - 53
  • [19] Predictive modeling of Pan Evaporation using Random Forest Algorithm along with Features Selection
    Rakhee
    Singh, Archana
    Mittal, Mamta
    Kumar, Amrender
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 380 - 384
  • [20] Using SVM and Random forest for different features selection in predicting bike rental amount
    Shiao, Yi Chen
    Chung, Wei Hsiang
    Chen, Rung Ching
    2018 9TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2018, : 246 - 250