Cardinality constrained submodular maximization for random streams

被引:0
|
作者
Liu, Paul [1 ]
Rubinstein, Aviad [1 ]
Vondrak, Jan [2 ]
Zhao, Junyao [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
THRESHOLD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of maximizing submodular functions in single-pass streaming and secretaries-with-shortlists models, both with random arrival order. For cardinality constrained monotone functions, Agrawal, Shadravan, and Stein [ASS19] gave a single-pass (1-1/is an element of-epsilon)-approximation algorithm using only linear memory, but their exponential dependence on " makes it impractical even for epsilon = 0:1. We simplify both the algorithm and the analysis, obtaining an exponential improvement in the epsilon-dependence (in particular, O(k/epsilon) memory). Extending these techniques, we also give a simple (1/e-epsilon)-approximation for non-monotone functions in O(k/epsilon) memory. For the monotone case, we also give a corresponding unconditional hardness barrier of 1-1/e + epsilon for single-pass algorithms in randomly ordered streams, even assuming unlimited computation. Finally, we show that the algorithms are simple to implement and work well on real world datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Distributed Submodular Maximization
    Mirzasoleiman, Baharan
    Karbasi, Amin
    Sarkar, Rik
    Krause, Andreas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [42] Differentiable Submodular Maximization
    Tschiatschek, Sebastian
    Sahin, Aytunc
    Krause, Andreas
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2731 - 2738
  • [43] Stochastic Submodular Maximization
    Asadpour, Arash
    Nazerzadeh, Hamid
    Saberi, Amin
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2008, 5385 : 477 - 489
  • [44] Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order
    Korula, Nitish
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 889 - 898
  • [45] ONLINE SUBMODULAR WELFARE MAXIMIZATION: GREEDY BEATS 1/2 IN RANDOM ORDER
    Korula, Nitish
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    SIAM JOURNAL ON COMPUTING, 2018, 47 (03) : 1056 - 1086
  • [46] Greedy is Good: Constrained Non-submodular Function Maximization via Weak Submodularity
    Shi, Ma-Jun
    Wang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (03) : 627 - 648
  • [47] Size-Constrained k-Submodular Maximization in Near-Linear Time
    Nie, Guanyu
    Zhu, Yanhui
    Nadew, Yididiya Y.
    Basu, Samik
    Pavan, A.
    Quinn, Christopher John
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1545 - 1554
  • [48] Online Continuous Submodular Maximization
    Chen, Lin
    Hassani, Hamed
    Karbasi, Amin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [49] Robust Sequence Submodular Maximization
    Sallam, Gamal
    Zheng, Zizhan
    Wu, Jie
    Ji, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [50] Robust Adaptive Submodular Maximization
    Tang, Shaojie
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (06) : 3277 - 3291