Robust Sequence Submodular Maximization

被引:0
|
作者
Sallam, Gamal [1 ]
Zheng, Zizhan [2 ]
Wu, Jie [1 ]
Ji, Bo [1 ,3 ]
机构
[1] Temple Univ, Philadelphia, PA 19122 USA
[2] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
[3] Virginia Tech, Dept Comp Sci, Blacksburg, VA USA
关键词
OPTIMALITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Submodularity is an important property of set functions and has been extensively studied in the literature. It models set functions that exhibit a diminishing returns property, where the marginal value of adding an element to a set decreases as the set expands. This notion has been generalized to considering sequence functions, where the order of adding elements plays a crucial role and determines the function value; the generalized notion is called sequence (or string) submodularity. In this paper, we study a new problem of robust sequence submodular maximization with cardinality constraints. The robustness is against the removal of a subset of elements in the selected sequence (e.g., due to malfunctions or adversarial attacks). Compared to robust submodular maximization for set function, new challenges arise when sequence functions are concerned. Specifically, there are multiple definitions of submodularity for sequence functions, which exhibit subtle yet critical differences. Another challenge comes from two directions of monotonicity: forward monotonicity and backward monotonicity, both of which are important to proving performance guarantees. To address these unique challenges, we design two robust greedy algorithms: while one algorithm achieves a constant approximation ratio but is robust only against the removal of a subset of contiguous elements, the other is robust against the removal of an arbitrary subset of the selected elements but requires a stronger assumption and achieves an approximation ratio that depends on the number of the removed elements. Finally, we generalize the analyses to considering sequence functions under weaker assumptions based on approximate versions of sequence submodularity and backward monotonicity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Robust Sequence Networked Submodular Maximization
    Shi, Qihao
    Fu, Bingyang
    Wang, Can
    Chen, Jiawei
    Zhou, Sheng
    Feng, Yan
    Chen, Chun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15100 - 15108
  • [2] Robust Adaptive Submodular Maximization
    Tang, Shaojie
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (06) : 3277 - 3291
  • [3] Distributionally Robust Submodular Maximization
    Staib, Matthew
    Wilder, Bryan
    Jegelka, Stefanie
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 506 - 516
  • [4] Robust monotone submodular function maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 505 - 537
  • [5] Robust Maximization of Correlated Submodular Functions
    Hou, Qiqiang
    Clark, Andrew
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7177 - 7183
  • [6] Robust monotone submodular function maximization
    James B. Orlin
    Andreas S. Schulz
    Rajan Udwani
    Mathematical Programming, 2018, 172 : 505 - 537
  • [7] Robust Monotone Submodular Function Maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 312 - 324
  • [8] Sequence submodular maximization meets streaming
    Yang, Ruiqi
    Xu, Dachuan
    Guo, Longkun
    Zhang, Dongmei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 43 - 55
  • [9] Streaming algorithms for robust submodular maximization
    Yang, Ruiqi
    Xu, Dachuan
    Cheng, Yukun
    Wang, Yishui
    Zhang, Dongmei
    DISCRETE APPLIED MATHEMATICS, 2021, 290 : 112 - 122
  • [10] Sequence submodular maximization meets streaming
    Ruiqi Yang
    Dachuan Xu
    Longkun Guo
    Dongmei Zhang
    Journal of Combinatorial Optimization, 2021, 41 : 43 - 55