On the Lucas sequence equation 1/Un = Σk=1∞ Uk-1/xk

被引:0
|
作者
Tengely, Szabolcs [1 ]
机构
[1] Univ Derecen, Math Inst, H-4010 Debrecen, Hungary
关键词
Lucas sequences; Diophantine equations; Elliptic curves; ELLIPTIC DIOPHANTINE EQUATIONS; ESTIMATING LINEAR-FORMS; INTEGER SOLUTIONS; FRACTIONS;
D O I
10.1007/s10998-015-0101-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1953 Stancliff noted an interesting property of the Fibonacci number F-11 = 89. One has that 1/89 = 0/10 + 1/10(2) + 1/10(3) + 2/10(4) + 3/10(5) + 5/10(6) + ..., where in the numerators the elements of the Fibonacci sequence appear. We provide methods to determine similar identities in case of Lucas sequences. As an example we prove that 1/U-10 = 1/416020 = Sigma(infinity)(k=0) U-k/647(k+1), where U-0 = 0, U-1 = 1 and U-n = 4U(n-1) + Un-2, n >= 2.
引用
收藏
页码:236 / 242
页数:7
相关论文
共 50 条
  • [21] Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1
    Kumar, D
    Jacob, MR
    Reynolds, MB
    Kerwin, SM
    BIOORGANIC & MEDICINAL CHEMISTRY, 2002, 10 (12) : 3997 - 4004
  • [22] Complete Genome Sequence of the Universal Killer Salmonella enterica Serovar Typhimurium UK-1 (ATCC 68169)
    Luo, Yingqin
    Kong, Qingke
    Yang, Jiseon
    Golden, Greg
    Wanda, Soo-Young
    Jensen, Roderick V.
    Ernst, Peter B.
    Curtiss, Roy, III
    JOURNAL OF BACTERIOLOGY, 2011, 193 (15) : 4035 - 4036
  • [23] On the series Σ∞k=1(3kk)-1k-n xk
    Batir, N
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04): : 371 - 381
  • [24] A CHARACTERIZATION OF PARETOS DISTRIBUTION AND (K+1)XK/O(K+1)
    SRIVASTAVA, MS
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (01): : 361 - +
  • [25] On some generalizations of the diophantine equation s(1k+2k + ... + xk) + r = dyn
    Rakaczki, Csaba
    ACTA ARITHMETICA, 2012, 151 (02) : 201 - 216
  • [26] The Diophantine equation (xk-1)(yk-1) = (zk-1)t
    Bennett, Michael A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (04): : 507 - 525
  • [27] ON AN EXPONENTIAL-TYPE DYNAMICAL SYSTEM - XK = (-1/2)[EXP(XK-1-XK)+EXP(XK-XK+1)]
    YAMAZAKI, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (06): : 611 - 616
  • [28] ON THE DYNAMICAL SYSTEM XK=-EXP[(XK-1-XK+1)/2]
    YAMAZAKI, S
    PHYSICS LETTERS A, 1989, 141 (8-9) : 401 - 406
  • [30] ON THE EQUATION F(1)1K+F(2)2K+=+F(X)XK+R(X) = BYZ
    URBANOWICZ, J
    ACTA ARITHMETICA, 1988, 51 (04) : 349 - 368