On some generalizations of the diophantine equation s(1k+2k + ... + xk) + r = dyn

被引:6
|
作者
Rakaczki, Csaba [1 ,2 ]
机构
[1] Univ Debrecen, Hungarian Acad Sci, Number Theory Res Grp, Inst Math, H-4010 Debrecen, Hungary
[2] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary
关键词
Bernoulli polynomials; higher degree equations; ZEROS;
D O I
10.4064/aa151-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:201 / 216
页数:16
相关论文
共 50 条
  • [1] On the Diophantine equation 1k+2k +...+ xk = yn
    Bennett, MA
    Gyory, K
    Pintér, A
    COMPOSITIO MATHEMATICA, 2004, 140 (06) : 1417 - 1431
  • [2] On the equation 1k+2k + ... + xk=yn
    Györy, K
    Pintér, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 403 - 414
  • [3] On the equation 1k+2k + ••• + xk = yn for fixed x
    Berczes, A.
    Hajdu, L.
    Miyazaki, T.
    Pink, I.
    JOURNAL OF NUMBER THEORY, 2016, 163 : 43 - 60
  • [4] DIOPHANTINE EQUATION 1K+2K+...+XK+R(X)=YZ
    VOORHOEVE, M
    GYORY, K
    TIJDEMAN, R
    ACTA MATHEMATICA, 1979, 143 (1-2) : 1 - 8
  • [5] A note on the Diophantine equation (xk - 1)(yk - 1)2 = z k - 1
    Li, Yangcheng
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (04) : 825 - 831
  • [6] On the Diophantine equation (x-1)k + xk + (x+1)k = yn
    Zhang, Zhongfeng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 93 - 100
  • [7] MOSER'S MATHEMAGICAL WORK ON THE EQUATION 1k+2k + ... + ( m-1)k = mk
    Moree, Pieter
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1707 - 1737
  • [8] REMARKS ON THE EQUATION 1K+2K+=+(X-1)K=XK
    URBANOWICZ, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1988, 91 (03): : 343 - 348
  • [9] ON THE DIOPHANTINE EQUATION S5 k =1 Fnk = 2a
    Tiebekabe, Pagdame
    Diouf, Ismaila
    FIBONACCI QUARTERLY, 2022, 60 (05): : 384 - 400
  • [10] ON THE EQUATION F(1)1K+F(2)2K+=+F(X)XK+R(X) = BYZ
    URBANOWICZ, J
    ACTA ARITHMETICA, 1988, 51 (04) : 349 - 368