Approximating the Cumulant Generating Function of Triangles in the Erdos-Renyi Random Graph

被引:6
|
作者
Giardina, Cristian [1 ]
Giberti, Claudio [2 ]
Magnanini, Elena [1 ,3 ]
机构
[1] Univ Modena & Reggio Emilia, Via G Campi 213-B, I-41125 Modena, Italy
[2] Univ Modena & Reggio Emilia, Via G Amendola 2, I-42122 Reggio Emilia, Italy
[3] Univ Padua, Via Trieste 63, I-35121 Padua, Italy
关键词
Erdos-Renyi random graph; Edge-triangle model; Rare events simulations; Phase transition; Graphs limits; Ensemble equivalence;
D O I
10.1007/s10955-021-02707-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the pressure of the "edge-triangle model", which is equivalent to the cumulant generating function of triangles in the Erdos-Renyi random graph. The investigation involves a population dynamics method on finite graphs of increasing volume, as well as a discretization of the graphon variational problem arising in the infinite volume limit. As a result, we locate a curve in the parameter space where a one-step replica symmetry breaking transition occurs. Sampling a large graph in the broken symmetry phase is well described by a graphon with a structure very close to the one of an equi-bipartite graph.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Improved Achievability and Converse Bounds for Erdos-Renyi Graph Matching
    Cullina, Daniel
    Kiyavash, Negar
    SIGMETRICS/PERFORMANCE 2016: PROCEEDINGS OF THE SIGMETRICS/PERFORMANCE JOINT INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SCIENCE, 2016, : 63 - 72
  • [42] Concentration of measure for the number of isolated vertices in the Erdos-Renyi random graph by size bias couplings
    Ghosh, Subhankar
    Goldstein, Larry
    Raic, Martin
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (11) : 1565 - 1570
  • [43] The Large Deviation Principle for Inhomogeneous Erdos-Renyi Random Graphs
    Markering, Maarten
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 711 - 727
  • [44] Limiting empirical spectral distribution for the non-backtracking matrix of an Erdos-Renyi random graph
    Wang, Ke
    Wood, Philip Matchett
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 956 - 973
  • [45] Majority-vote on directed Erdos-Renyi random graphs
    Lima, F. W. S.
    Sousa, A. O.
    Sumuor, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3503 - 3510
  • [46] Embedding the Erdos-Renyi hypergraph into the random regular hypergraph and Hamiltonicity
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    Sileikis, Matas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 719 - 740
  • [47] Eigenvalues Outside the Bulk of Inhomogeneous Erdos-Renyi Random Graphs
    Chakrabarty, Arijit
    Chakraborty, Sukrit
    Hazra, Rajat Subhra
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1746 - 1780
  • [48] Asymptotic spectral analysis of generalized Erdos-Renyi random graphs
    Liang, Song
    Obata, Nobuaki
    Takahashi, Shuji
    NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY, 2007, 78 : 211 - 229
  • [49] LACK OF HYPERBOLICITY IN ASYMPTOTIC ERDOS-RENYI SPARSE RANDOM GRAPHS
    Narayan, Onuttom
    Saniee, Iraj
    Tucci, Gabriel H.
    INTERNET MATHEMATICS, 2015, 11 (03) : 277 - 288
  • [50] Limiting shape of the depth first search tree in an Erdos-Renyi graph
    Enriquez, Nathanael
    Faraud, Gabriel
    Menard, Laurent
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (02) : 501 - 516