Limiting empirical spectral distribution for the non-backtracking matrix of an Erdos-Renyi random graph

被引:2
作者
Wang, Ke [1 ]
Wood, Philip Matchett [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Random graph; non-backtracking matrix; eigenvalues; EIGENVALUES; UNIVERSALITY; LAW;
D O I
10.1017/S096354832300024X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note, we give a precise description of the limiting empirical spectral distribution for the non-backtracking matrices for an Erdos-Renyi graph G(n, p) assuming np / log n tends to infinity. We show that derandomizing part of the non-backtracking random matrix simplifies the spectrum considerably, and then, we use Tao and Vu's replacement principle and the Bauer-Fike theorem to show that the partly derandomized spectrum is, in fact, very close to the original spectrum.
引用
收藏
页码:956 / 973
页数:18
相关论文
共 41 条
  • [1] The completely delocalized region of the Erdos-Renyi graph
    Alt, Johannes
    Ducatez, Raphael
    Knowles, Antti
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [2] Angel O, 2015, T AM MATH SOC, V367, P4287
  • [4] Bass H., 1992, Internat. J. Math, V3, P717, DOI [10.1142/S0129167X92000357, DOI 10.1142/S0129167X92000357]
  • [5] Benaych-Georges F, 2018, Arxiv, DOI arXiv:1601.04055
  • [6] Spectral radii of sparse random matrices
    Benaych-Georges, Florent
    Bordenave, Charles
    Knowles, Antti
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 2141 - 2161
  • [7] A NEW PROOF OF FRIEDMANOS SECOND EIGENVALUE THEOREM AND ITS EXTENSION TO RANDOM LIFTS
    Bordenave, Charles
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (06): : 1393 - 1439
  • [8] NONBACKTRACKING SPECTRUM OF RANDOM GRAPHS: COMMUNITY DETECTION AND NONREGULAR RAMANUJAN GRAPHS
    Bordenave, Charles
    Lelarge, Marc
    Massoulie, Laurent
    [J]. ANNALS OF PROBABILITY, 2018, 46 (01) : 1 - 71
  • [9] Chafai D., 2009, Lecture Notes
  • [10] A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS
    CHERNOFF, H
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04): : 493 - 507