Network Structure Engineering of Organosilica Membranes for Enhanced CO2 Capture Performance

被引:2
|
作者
Jiang, Qiwei [1 ]
Guo, Meng [2 ]
机构
[1] Wuxi Ginkgo Plast Ind Co Ltd, Wuxi 214216, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Jiangsu, Peoples R China
关键词
organosilica membranes; CO2; capture; calcination temperatures; pore size tailoring; CARBON-DIOXIDE SEPARATION; COMPOSITE MEMBRANES; RECENT PROGRESS; GAS-PERMEATION; ETHYLENE; ETHANE; MICROSTRUCTURE; FABRICATION; TRANSPORT;
D O I
10.3390/membranes12050470
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The membrane separation process for targeted CO2 capture application has attracted much attention due to the significant advantages of saving energy and reducing consumption. High-performance separation membranes are a key factor in the membrane separation system. In the present study, we conducted a detailed examination of the effect of calcination temperatures on the network structures of organosilica membranes. Bis(triethoxysilyl)acetylene (BTESA) was selected as a precursor for membrane fabrication via the sol-gel strategy. Calcination temperatures affected the silanol density and the membrane pore size, which was evidenced by the characterization of FT-IR, TG, N-2 sorption, and molecular size dependent gas permeance. BTESA membrane fabricated at 500 degrees C showed a loose structure attributed to the decomposed acetylene bridges and featured an ultrahigh CO2 permeance around 15,531 GPU, but low CO2/N-2 selectivity of 3.8. BTESA membrane calcined at 100 degrees C exhibited satisfactory CO2 permeance of 3434 GPU and the CO2/N-2 selectivity of 22, displaying great potential for practical CO2 capture application.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Synthesis of PI/ZIF-8 aerogel with hierarchical porous structure for enhanced CO2 capture performance
    Zhang, Zhongshan
    Zhang, Jian
    Dou, Guoliang
    Zeng, Qingming
    CHEMICAL PHYSICS LETTERS, 2022, 801
  • [32] International CO2 capture test network
    Topper, JM
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 1543 - 1546
  • [33] Fluorinated-cardo-based thermally rearranged membranes with enhanced gas separation performance for CO2 capture and hydrogen separation
    Fan, Fangxu
    Sun, Yongchao
    Bai, Lu
    Li, Tianyou
    Gao, Zeyuan
    He, Gaohong
    Ma, Canghai
    JOURNAL OF MEMBRANE SCIENCE, 2025, 722
  • [34] Challenges in engineering the structure of ionic liquids towards direct air capture of CO2
    Yang, Zhenzhen
    Dai, Sheng
    GREEN CHEMICAL ENGINEERING, 2021, 2 (04) : 342 - 345
  • [35] Challenges in engineering the structure of ionic liquids towards direct air capture of CO2
    Zhenzhen Yang
    Sheng Dai
    GreenChemicalEngineering, 2021, 2 (04) : 342 - 345
  • [36] CO2 capture from natural gas combined cycles by CO2 selective membranes
    Turi, D. M.
    Ho, M.
    Ferrari, M. C.
    Chiesa, P.
    Wiley, D. E.
    Romano, M. C.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 61 : 168 - 183
  • [37] Assessment of CO2 capture technologies for CO2 utilization in enhanced oil recovery
    Ogidiama, Oghare Victor
    Shamim, Tariq
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2021, 11 (03) : 432 - 444
  • [38] Enhanced performance of a biomimetic membrane for Na2CO3 crystallization in the scenario of CO2 capture
    Ye, Wenyuan
    Lin, Jiuyang
    Madsen, Henrik Taekker
    Sogaard, Erik Gydesen
    Helix-Nielsen, Claus
    Luis, Patricia
    Van der Bruggen, Bart
    JOURNAL OF MEMBRANE SCIENCE, 2016, 498 : 75 - 85
  • [39] CO2 speciation and solvent structure of CO2 anhydrous capture fluids
    Heldebrant, David
    Malhotra, Deepika
    Jones, Martin
    Headen, Thomas
    Cantu, David
    Glezakou, Vanda
    Rousseau, Roger
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [40] Zirconia-supported hybrid organosilica microporous membranes for CO2 separation and pervaporation
    Van Gestel, Tim
    Velterop, Frans
    Meulenberg, Wilhelm A.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 259