Network Structure Engineering of Organosilica Membranes for Enhanced CO2 Capture Performance

被引:2
|
作者
Jiang, Qiwei [1 ]
Guo, Meng [2 ]
机构
[1] Wuxi Ginkgo Plast Ind Co Ltd, Wuxi 214216, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Jiangsu, Peoples R China
关键词
organosilica membranes; CO2; capture; calcination temperatures; pore size tailoring; CARBON-DIOXIDE SEPARATION; COMPOSITE MEMBRANES; RECENT PROGRESS; GAS-PERMEATION; ETHYLENE; ETHANE; MICROSTRUCTURE; FABRICATION; TRANSPORT;
D O I
10.3390/membranes12050470
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The membrane separation process for targeted CO2 capture application has attracted much attention due to the significant advantages of saving energy and reducing consumption. High-performance separation membranes are a key factor in the membrane separation system. In the present study, we conducted a detailed examination of the effect of calcination temperatures on the network structures of organosilica membranes. Bis(triethoxysilyl)acetylene (BTESA) was selected as a precursor for membrane fabrication via the sol-gel strategy. Calcination temperatures affected the silanol density and the membrane pore size, which was evidenced by the characterization of FT-IR, TG, N-2 sorption, and molecular size dependent gas permeance. BTESA membrane fabricated at 500 degrees C showed a loose structure attributed to the decomposed acetylene bridges and featured an ultrahigh CO2 permeance around 15,531 GPU, but low CO2/N-2 selectivity of 3.8. BTESA membrane calcined at 100 degrees C exhibited satisfactory CO2 permeance of 3434 GPU and the CO2/N-2 selectivity of 22, displaying great potential for practical CO2 capture application.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Performance-enhanced activated spherical carbon adsorbents for CO2 capture
    Snape, Colin Edward
    Liu, Jingjing
    Sun, Chenggong
    Liu, Hao
    Sun, Nannan
    Li, Kaixi
    Wei, Wei
    Sun, Yuhan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [22] Supported ionic liquid membranes for CO2 capture
    Luebke, David
    Nulwala, Hunaid
    Wickramanayake, Shan
    Hopkinson, David
    Myers, Christina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [23] Recent advances in polymeric membranes for CO2 capture
    Yang Han
    W.S.Winston Ho
    ChineseJournalofChemicalEngineering, 2018, 26 (11) : 2238 - 2254
  • [24] Facilitated transport membranes for CO2 separation and capture
    Tong, Zi
    Ho, W. S. Winston
    SEPARATION SCIENCE AND TECHNOLOGY, 2017, 52 (02) : 156 - 167
  • [25] In silico screening of zeolite membranes for CO2 capture
    Krishna, Rajamani
    van Baten, Jasper M.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 360 (1-2) : 323 - 333
  • [26] Composite hollow fiber membranes for CO2 capture
    Sandru, Marius
    Haukebø, Siv Hustad
    Hägg, May-Britt
    Journal of Membrane Science, 2010, 345 (03) : 172 - 186
  • [27] Recent advances in polymeric membranes for CO2 capture
    Han, Yang
    Ho, W. S. Winston
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2238 - 2254
  • [28] Polymer Blends for Improved CO2 Capture Membranes
    Zare, Alireza
    Perna, Lorenza
    Nogalska, Adrianna
    Ambrogi, Veronica
    Cerruti, Pierfrancesco
    Tylkowski, Bartosz
    Garcia-Valls, Ricard
    Giamberini, Marta
    POLYMERS, 2019, 11 (10)
  • [29] Development of CO2 Molecular Gate Membranes for IGCC Process with CO2 Capture
    Kai, Teruhiko
    Duan, Shuhong
    Ito, Fuminori
    Mikami, Satoshi
    Sato, Yoshinobu
    Nakao, Shin-ichi
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 613 - 620
  • [30] Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review
    Yu, Liang
    Kanezashi, Masakoto
    Nagasawa, Hiroki
    Tsuru, Toshinori
    APPLIED SCIENCES-BASEL, 2018, 8 (07):