Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation

被引:32
|
作者
Demirli, Ramazan [1 ]
Saniie, Jafar [2 ]
机构
[1] Villanova Univ, Coll Engn, Ctr Adv Commun, Villanova, PA 19085 USA
[2] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
关键词
ATOMIC DECOMPOSITION; ALGORITHM;
D O I
10.1016/j.jfranklin.2013.09.028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian Chirplet Model (GCM) is commonly used for signal analysis in many fields including ultrasound, radar, sonar, seismology, and biomedicine. The symmetric envelope of GCM is often inadequate in representing real echo envelopes which are more likely to be asymmetric. In our previous work we introduced the Asymmetric Gaussian Chirplet Model (AGM) that generalizes the GCM. In this paper, an efficient successive parameter estimation algorithm is proposed utilizing echo envelope and instantaneous phase obtained in analytical signal representation. The initial parameters obtained in successive estimation are fine-tuned with a fast Gauss Newton algorithm developed for the AGCM to achieve Maximum Likelihood Estimation (MLE) of model parameters. The performance of parameter estimation algorithm is formally verified employing Monte-Carlo simulations and Cramer-Rao Lower Bounds. Parameter estimation is shown to be minimum variance and unbiased for SNR levels 10 dB and higher. :Furthermore, AGCM has been tested on real ultrasound echoes measured from planar targets. AGCM provides better echo fits than the GCM due to its more flexible envelope. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:907 / 921
页数:15
相关论文
共 50 条
  • [41] Generalized Gauss Distribution Noise Model for Respiratory Parameter Estimation
    Saatci, Esra
    Akan, Aydin
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 403 - +
  • [42] Parameter estimation of Rayleigh-Generalized gamma mixture model
    Bentoumi A.
    Mezache A.
    Oudira H.
    Instrumentation Mesure Metrologie, 2020, 19 (01): : 59 - 64
  • [43] PARAMETER ESTIMATION OF GAUSSIAN MIXTURE MODEL BASED ON VARIATIONAL BAYESIAN LEARNING
    Zhao, Linchang
    Shang, Zhaowei
    Qin, Anyong
    Tang, Yuan Yan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 99 - 104
  • [44] TUNING PARAMETER SELECTION FOR PENALIZED LIKELIHOOD ESTIMATION OF GAUSSIAN GRAPHICAL MODEL
    Gao, Xin
    Pu, Daniel Q.
    Wu, Yuehua
    Xu, Hong
    STATISTICA SINICA, 2012, 22 (03) : 1123 - 1146
  • [45] Generalized Fractional Maxwell Model: Parameter Estimation of a Viscoelastic Material
    Costa, M. Fernanda P.
    Ribeiro, C.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 790 - 793
  • [46] MODEL PARAMETER-ESTIMATION FOR RECIPROCAL GAUSSIAN RANDOM-PROCESSES
    CUSANI, R
    BACCARELLI, E
    BLASIO, GD
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (03) : 792 - 795
  • [47] Parameter estimation of Gaussian gray diffusion model of static image spot
    Wang, Haiyong
    Zhou, Wenrui
    Lin, Haoyu
    Wang, Xinlong
    Guangxue Xuebao/Acta Optica Sinica, 2012, 32 (03):
  • [48] The Log-Bimodal Asymmetric Generalized Gaussian Model with Application to Positive Data
    Martinez-Florez, Guillermo
    Tovar-Falon, Roger
    Bolfarine, Heleno
    MATHEMATICS, 2023, 11 (16)
  • [49] Statistical Representation of Wind Power Ramps Using a Generalized Gaussian Mixture Model
    Cui, Mingjian
    Feng, Cong
    Wang, Zhenke
    Zhang, Jie
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (01) : 261 - 272
  • [50] Parameter Estimation of a Moving Acoustic Source: Linear Chirplet Transform Vs WVD
    Pelluri, Sai Gunaranjan
    Sreenivas, T. V.
    2017 TWENTY-THIRD NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2017,