Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation

被引:32
|
作者
Demirli, Ramazan [1 ]
Saniie, Jafar [2 ]
机构
[1] Villanova Univ, Coll Engn, Ctr Adv Commun, Villanova, PA 19085 USA
[2] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
关键词
ATOMIC DECOMPOSITION; ALGORITHM;
D O I
10.1016/j.jfranklin.2013.09.028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian Chirplet Model (GCM) is commonly used for signal analysis in many fields including ultrasound, radar, sonar, seismology, and biomedicine. The symmetric envelope of GCM is often inadequate in representing real echo envelopes which are more likely to be asymmetric. In our previous work we introduced the Asymmetric Gaussian Chirplet Model (AGM) that generalizes the GCM. In this paper, an efficient successive parameter estimation algorithm is proposed utilizing echo envelope and instantaneous phase obtained in analytical signal representation. The initial parameters obtained in successive estimation are fine-tuned with a fast Gauss Newton algorithm developed for the AGCM to achieve Maximum Likelihood Estimation (MLE) of model parameters. The performance of parameter estimation algorithm is formally verified employing Monte-Carlo simulations and Cramer-Rao Lower Bounds. Parameter estimation is shown to be minimum variance and unbiased for SNR levels 10 dB and higher. :Furthermore, AGCM has been tested on real ultrasound echoes measured from planar targets. AGCM provides better echo fits than the GCM due to its more flexible envelope. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:907 / 921
页数:15
相关论文
共 50 条
  • [21] Detection and extraction of velocity pulses of near-fault ground motions using asymmetric Gaussian chirplet model
    Sharbati, R.
    Rahimi, R.
    Koopialipoor, M. R.
    Elyasi, N.
    Khoshnoudian, F.
    Ramazi, H. R.
    Amindavar, H. R.
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2020, 133
  • [22] Estimation of shape parameter for generalized Gaussian distribution in subband decompositions of video - Reply
    Sharifi, K
    LeonGarcia, A
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1995, 5 (06) : 570 - 570
  • [23] Distributed Parameter Estimation for Univariate Generalized Gaussian Distribution over Sensor Networks
    Chen Liang
    Fuxi Wen
    Zhongmin Wang
    Circuits, Systems, and Signal Processing, 2017, 36 : 1311 - 1321
  • [24] Fast Shape Parameter Estimation of the Complex Generalized Gaussian Distribution in SAR Images
    Leng, Xiangguang
    Ji, Kefeng
    Zhou, Shilin
    Xing, Xiangwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1933 - 1937
  • [25] Distributed Parameter Estimation for Univariate Generalized Gaussian Distribution over Sensor Networks
    Liang, Chen
    Wen, Fuxi
    Wang, Zhongmin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (03) : 1311 - 1321
  • [26] RANDOM VARIABILITY AND PARAMETER ESTIMATION FOR GENERALIZED PRODUCTION MODEL
    FOX, WW
    FISHERY BULLETIN OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, 1971, 69 (03): : 569 - &
  • [27] Parameter estimation for a generalized semiparametric model with repeated measurements
    Shujie Ma
    Zijian Huang
    Chih-Ling Tsai
    Annals of the Institute of Statistical Mathematics, 2016, 68 : 725 - 764
  • [28] Parameter estimation for a generalized semiparametric model with repeated measurements
    Ma, Shujie
    Huang, Zijian
    Tsai, Chih-Ling
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (04) : 725 - 764
  • [29] Parameter estimation for Vasicek model driven by a general Gaussian noise
    Chen, Yong
    Li, Ying
    Pei, Xingzhi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (09) : 3132 - 3148
  • [30] ACHIEVABLE ACCURACY IN PARAMETER ESTIMATION OF A GAUSSIAN PLUME DISPERSION MODEL
    Ristic, Branko
    Gunatilaka, Ajith
    Gailis, Ralph
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 209 - 212