Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation

被引:32
|
作者
Demirli, Ramazan [1 ]
Saniie, Jafar [2 ]
机构
[1] Villanova Univ, Coll Engn, Ctr Adv Commun, Villanova, PA 19085 USA
[2] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
关键词
ATOMIC DECOMPOSITION; ALGORITHM;
D O I
10.1016/j.jfranklin.2013.09.028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian Chirplet Model (GCM) is commonly used for signal analysis in many fields including ultrasound, radar, sonar, seismology, and biomedicine. The symmetric envelope of GCM is often inadequate in representing real echo envelopes which are more likely to be asymmetric. In our previous work we introduced the Asymmetric Gaussian Chirplet Model (AGM) that generalizes the GCM. In this paper, an efficient successive parameter estimation algorithm is proposed utilizing echo envelope and instantaneous phase obtained in analytical signal representation. The initial parameters obtained in successive estimation are fine-tuned with a fast Gauss Newton algorithm developed for the AGCM to achieve Maximum Likelihood Estimation (MLE) of model parameters. The performance of parameter estimation algorithm is formally verified employing Monte-Carlo simulations and Cramer-Rao Lower Bounds. Parameter estimation is shown to be minimum variance and unbiased for SNR levels 10 dB and higher. :Furthermore, AGCM has been tested on real ultrasound echoes measured from planar targets. AGCM provides better echo fits than the GCM due to its more flexible envelope. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:907 / 921
页数:15
相关论文
共 50 条
  • [1] Dual Gaussian attenuation model of ultrasonic echo and its parameter estimation
    Wang, Dawei
    Wang, Zhaoba
    Li, Peng
    Chen, Youxing
    Li, Haiyang
    AIP ADVANCES, 2019, 9 (05)
  • [2] Ultrasonic Chirplet Echo Parameter Estimation using Time-Frequency Distributions
    Govindan, Pramod
    Kasaeifard, Alireza
    Saniie, Jafar
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [3] A fast parameter estimation of generalized Gaussian distribution
    Wang, Taiyue
    Li, Hongwei
    Li, Zhiming
    Wang, Zhihua
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 101 - +
  • [4] Parameter Estimation For Multivariate Generalized Gaussian Distributions
    Pascal, Frederic
    Bombrun, Lionel
    Tourneret, Jean-Yves
    Berthoumieu, Yannick
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (23) : 5960 - 5971
  • [5] Asymmetric Gaussian Echo Model for LiDAR Intensity Correction
    Ma, Xinyue
    Jiang, Haitian
    Jin, Xin
    REMOTE SENSING, 2024, 16 (24)
  • [6] Chirplet Transform Signal Decomposition for echo detection and estimation
    Sorenson, Logan
    Lu, Weng
    Martinez-Vallina, Fernando
    Saniie, Jafar
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 509 - +
  • [7] Mutual Information and Parameter Estimation in the Generalized Inverse Gaussian Diffusion Model of Cortical Neurons
    Sungkar M.
    Berger T.
    Levy W.B.
    IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2 (02): : 166 - 182
  • [8] Asymmetric chirplet transform for sparse representation of seismic data
    Bossmann, Florian
    Ma, Jianwei
    GEOPHYSICS, 2015, 80 (06) : WD89 - WD100
  • [9] Bernoulli-Gaussian Model with Model Parameter Estimation
    Yu, Yangkang
    Yang, Ling
    Shen, Yunzhong
    JOURNAL OF SURVEYING ENGINEERING, 2024, 150 (04)
  • [10] Shape Parameter and Sparse Representation Recovery under Generalized Gaussian Noise
    Miertoiu, Florin Ilarion
    Dumitrescu, Bogdan
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 2139 - 2143