LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy

被引:19
|
作者
Ewald, Michael [1 ]
Aerts, Raf [2 ]
Lenoir, Jonathan [3 ]
Fassnacht, Fabian Ewald [1 ]
Nicolas, Manuel [4 ]
Skowronek, Sandra [5 ]
Piat, Jerome [4 ]
Honnay, Olivier [2 ]
Garzon-Lopez, Carol Ximena [3 ,6 ]
Feilhauer, Hannes [5 ]
Van de Kerchove, Ruben [7 ]
Somers, Ben [8 ]
Hattab, Tarek [3 ,9 ]
Rocchini, Duccio [10 ,11 ,12 ]
Schmidtlein, Sebastian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Geog & Geoecol, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Katholieke Univ Leuven, Biol Dept, Kasteelpk Arenberg 31-2435, B-3001 Leuven, Belgium
[3] Univ Picardie Jules Verne, UMR CNRS 7058, EDYSAN, UR Ecol & Dynam Syst Anthropises, 1 Rue Louvels, F-80037 Amiens 1, France
[4] Off Natl Forets, Dept Rech & Dev, F-77300 Fontainebleau, France
[5] FAU Erlangen Nuremberg, Inst Geog, Wetterkreuz 15, D-91058 Erlangen, Germany
[6] Univ Los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[7] VITO Flemish Inst Technol Res, Boeretang 200, B-2400 Mol, Belgium
[8] Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200E, B-3001 Leuven, Belgium
[9] IFREMER, UMR MARBEC, Ave Jean Monnet CS, Sete, France
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Univ Trento, Ctr Agr Food Environm, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[12] Univ Trento, Ctr Integrat Biol, Via Sommarive 14, I-38123 Povo, TN, Italy
关键词
Remote sensing; Canopy biochemistry; APEX; Hyperspectral imagery; Leaf traits; Leaf nutrient content; Data fusion; Forest ecosystem; LEAF FUNCTIONAL TRAITS; LITTER DECOMPOSITION; HYPERSPECTRAL DATA; PLANT-COMMUNITIES; DECIDUOUS FOREST; NITROGEN; ECOSYSTEM; VARIABILITY; VEGETATION; TEMPERATE;
D O I
10.1016/j.rse.2018.03.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Imaging spectroscopy is a powerful tool for mapping chemical leaf traits at the canopy level. However, covariance with structural canopy properties is hampering the ability to predict leaf biochemical traits in structurally heterogeneous forests. Here, we used imaging spectroscopy data to map canopy level leaf nitrogen (N) and phosphorus concentrations (P-mass) of a temperate mixed forest. By integrating predictor variables derived from airborne laser scanning (LiDAR), capturing the biophysical complexity of the canopy, we aimed at improving predictions of N-mass and P-mass. We used partial least squares regression (PLSR) models to link community weighted means of both leaf constituents with 245 hyperspectral bands (426-2425 nm) and 38 LiDAR-derived variables. LiDAR-derived variables improved the model's explained variances for N-mass (R-cv(2) 0.31 vs. 0.41, % RSMEcv 3.3 vs. 3.0) and P-mass (R-cv(2) 0.45 vs. 0.63, % RSMEcv 15.3 vs. 12.5). The predictive performances of N-mass models using hyperspectral bands only, decreased with increasing structural heterogeneity included in the calibration dataset. To test the independent contribution of canopy structure we additionally fit the models using only LiDAR-derived variables as predictors. Resulting values ranged from 0.26 for N-mass to 0.54 for 13,P-mass indicating considerable covariation between biochemical traits and forest structural properties. N-mass was negatively related to the spatial heterogeneity of canopy density, whereas Pm, was negatively related to stand height and to the total cover of tree canopies. In the specific setting of this study, the importance of structural variables can be attributed to the presence of two tree species, featuring structural and biochemical properties different from co-occurring species. Still, existing functional linkages between structure and biochemistry at the leaf and canopy level suggest that canopy structure, used as proxy, can in general support the mapping of leaf biochemistry over broad spatial extents.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [41] Forest inventory based on canopy height model derived from airborne laser scanning data
    Sackov, Ivan
    CENTRAL EUROPEAN FORESTRY JOURNAL, 2022, 68 (04) : 224 - 231
  • [42] Estimating forest growth using canopy metrics derived from airborne laser scanner data
    Næsset, E
    Gobakken, T
    REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) : 453 - 465
  • [43] Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure
    Valbuena, Ruben
    Eerikainen, Kalle
    Packalen, Petteri
    Maltamo, Matti
    ECOLOGICAL INDICATORS, 2016, 60 : 574 - 585
  • [44] Canopy Structure Attributes Extraction from LiDAR Data Based on Tree Morphology and Crown Height Proportion
    Qingyan Meng
    Xu Chen
    Jiahui Zhang
    Yunxiao Sun
    Jiaguo Li
    Tamás Jancsó
    Zhenhui Sun
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 1433 - 1444
  • [45] Canopy Structure Attributes Extraction from LiDAR Data Based on Tree Morphology and Crown Height Proportion
    Meng, Qingyan
    Chen, Xu
    Zhang, Jiahui
    Sun, Yunxiao
    Li, Jiaguo
    Jancso, Tamas
    Sun, Zhenhui
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (09) : 1433 - 1444
  • [46] Comparison of forest canopy height profiles in a mountainous region of Taiwan derived from airborne lidar and unmanned aerial vehicle imagery
    Chung, Chih-Hsin
    Wang, Chao-Huan
    Hsieh, Han-Ching
    Huang, Cho-Ying
    GISCIENCE & REMOTE SENSING, 2019, 56 (08) : 1289 - 1304
  • [47] BACKSCATTERING OF INDIVIDUAL LIDAR PULSES FROM FOREST CANOPIES EXPLAINED BY PHOTOGRAMMETRICALLY DERIVED VEGETATION STRUCTURE
    Korpela, I.
    Hovi, A.
    Korhonen, L.
    ISPRS HANNOVER WORKSHOP 2013, 2013, 40-1 (W-1): : 171 - 176
  • [48] Backscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure
    Korpela, Ilkka
    Hovi, Aarne
    Korhonen, Lauri
    ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83 : 81 - 93
  • [49] Canopy Height Model (CHM) Derived From a TanDEM-X InSAR DSM and an Airborne Lidar DTM in Boreal Forest
    Sadeghi, Yaser
    St-Onge, Benoit
    Leblon, Brigitte
    Simard, Marc
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (01) : 381 - 397
  • [50] Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India
    Ghosh, Sujit M.
    Behera, Mukunda D.
    Kumar, Subham
    Das, Pulakesh
    Prakash, Ambadipudi J.
    Bhaskaran, Prasad K.
    Roy, Parth S.
    Barik, Saroj K.
    Jeganathan, Chockalingam
    Srivastava, Prashant K.
    Behera, Soumit K.
    REMOTE SENSING, 2022, 14 (23)