LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy

被引:19
|
作者
Ewald, Michael [1 ]
Aerts, Raf [2 ]
Lenoir, Jonathan [3 ]
Fassnacht, Fabian Ewald [1 ]
Nicolas, Manuel [4 ]
Skowronek, Sandra [5 ]
Piat, Jerome [4 ]
Honnay, Olivier [2 ]
Garzon-Lopez, Carol Ximena [3 ,6 ]
Feilhauer, Hannes [5 ]
Van de Kerchove, Ruben [7 ]
Somers, Ben [8 ]
Hattab, Tarek [3 ,9 ]
Rocchini, Duccio [10 ,11 ,12 ]
Schmidtlein, Sebastian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Geog & Geoecol, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Katholieke Univ Leuven, Biol Dept, Kasteelpk Arenberg 31-2435, B-3001 Leuven, Belgium
[3] Univ Picardie Jules Verne, UMR CNRS 7058, EDYSAN, UR Ecol & Dynam Syst Anthropises, 1 Rue Louvels, F-80037 Amiens 1, France
[4] Off Natl Forets, Dept Rech & Dev, F-77300 Fontainebleau, France
[5] FAU Erlangen Nuremberg, Inst Geog, Wetterkreuz 15, D-91058 Erlangen, Germany
[6] Univ Los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[7] VITO Flemish Inst Technol Res, Boeretang 200, B-2400 Mol, Belgium
[8] Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200E, B-3001 Leuven, Belgium
[9] IFREMER, UMR MARBEC, Ave Jean Monnet CS, Sete, France
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Univ Trento, Ctr Agr Food Environm, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[12] Univ Trento, Ctr Integrat Biol, Via Sommarive 14, I-38123 Povo, TN, Italy
关键词
Remote sensing; Canopy biochemistry; APEX; Hyperspectral imagery; Leaf traits; Leaf nutrient content; Data fusion; Forest ecosystem; LEAF FUNCTIONAL TRAITS; LITTER DECOMPOSITION; HYPERSPECTRAL DATA; PLANT-COMMUNITIES; DECIDUOUS FOREST; NITROGEN; ECOSYSTEM; VARIABILITY; VEGETATION; TEMPERATE;
D O I
10.1016/j.rse.2018.03.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Imaging spectroscopy is a powerful tool for mapping chemical leaf traits at the canopy level. However, covariance with structural canopy properties is hampering the ability to predict leaf biochemical traits in structurally heterogeneous forests. Here, we used imaging spectroscopy data to map canopy level leaf nitrogen (N) and phosphorus concentrations (P-mass) of a temperate mixed forest. By integrating predictor variables derived from airborne laser scanning (LiDAR), capturing the biophysical complexity of the canopy, we aimed at improving predictions of N-mass and P-mass. We used partial least squares regression (PLSR) models to link community weighted means of both leaf constituents with 245 hyperspectral bands (426-2425 nm) and 38 LiDAR-derived variables. LiDAR-derived variables improved the model's explained variances for N-mass (R-cv(2) 0.31 vs. 0.41, % RSMEcv 3.3 vs. 3.0) and P-mass (R-cv(2) 0.45 vs. 0.63, % RSMEcv 15.3 vs. 12.5). The predictive performances of N-mass models using hyperspectral bands only, decreased with increasing structural heterogeneity included in the calibration dataset. To test the independent contribution of canopy structure we additionally fit the models using only LiDAR-derived variables as predictors. Resulting values ranged from 0.26 for N-mass to 0.54 for 13,P-mass indicating considerable covariation between biochemical traits and forest structural properties. N-mass was negatively related to the spatial heterogeneity of canopy density, whereas Pm, was negatively related to stand height and to the total cover of tree canopies. In the specific setting of this study, the importance of structural variables can be attributed to the presence of two tree species, featuring structural and biochemical properties different from co-occurring species. Still, existing functional linkages between structure and biochemistry at the leaf and canopy level suggest that canopy structure, used as proxy, can in general support the mapping of leaf biochemistry over broad spatial extents.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [21] Using multiscale lidar to determine variation in canopy structure from African forest elephant trails
    Keany, Jenna M.
    Burns, Patrick
    Abraham, Andrew J.
    Jantz, Patrick
    Makaga, Loic
    Saatchi, Sassan
    Maisels, Fiona
    Abernethy, Katharine
    Doughty, Christopher E.
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2024, 10 (05) : 655 - 667
  • [22] Testing the robustness of predictive models for chlorophyll generated from spaceborne imaging spectroscopy data for a mixedwood boreal forest canopy
    Goekkaya, Kemal
    Thomas, Valerie
    Noland, Thomas
    McCaughey, Harry
    Treitz, Paul
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (01) : 218 - 233
  • [23] Influence of Sampling Design Parameters on Biomass Predictions Derived from Airborne LiDAR Data
    Bouvier, Marc
    Durrieu, Sylvie
    Fournier, Richard A.
    Saint-Geours, Nathalie
    Guyon, Dominique
    Grau, Eloi
    de Boissieu, Florian
    CANADIAN JOURNAL OF REMOTE SENSING, 2019, 45 (05) : 650 - 672
  • [24] Retrieval of Forest Vertical Structure from PolInSAR Data by Machine Learning Using LIDAR-Derived Features
    Brigot, Guillaume
    Simard, Marc
    Colin-Koeniguer, Elise
    Boulch, Alexandre
    REMOTE SENSING, 2019, 11 (04)
  • [25] Inventory and cartography of forest variables derived from LiDAR data: comparison of methods
    Delia Ortiz-Reyes, Alma
    Rene Valdez-Lazalde, J.
    De los Santos-Posadas, Hector M.
    Angeles-Perez, Gregorio
    Paz-Pellat, Fernando
    Martinez-Trinidad, Tomas
    MADERA Y BOSQUES, 2015, 21 (03): : 111 - 128
  • [26] Improved snow interception modeling using canopy parameters derived from airborne LiDAR data
    Moeser, D.
    Staehli, M.
    Jonas, T.
    WATER RESOURCES RESEARCH, 2015, 51 (07) : 5041 - 5059
  • [27] Extraction of Features From LIDAR Waveform Data for Characterizing Forest Structure
    Jung, Jinha
    Crawford, Melba M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 492 - 496
  • [28] THE POTENTIAL OF FOREST BIOMASS INVERSION BASED ON CANOPY-INDEPENDENT STRUCTURE METRICS TESTED BY AIRBORNE LIDAR DATA
    Wang, Qiang
    Ni-Meister, Wenge
    Ni, Wenjian
    Pang, Yong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7354 - 7357
  • [29] Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties
    Palace, Michael
    Keller, Michael
    Asner, Gregory P.
    Hagen, Stephen
    Braswell, Bobby
    BIOTROPICA, 2008, 40 (02) : 141 - 150
  • [30] Interpretation of forest disturbance using a time series of Landsat imagery and canopy structure from airborne lidar
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    CANADIAN JOURNAL OF REMOTE SENSING, 2014, 39 (06) : 521 - 542