ADAPTIVE DENSITY ESTIMATION FOR CLUSTERING WITH GAUSSIAN MIXTURES

被引:14
|
作者
Maugis-Rabusseau, C. [1 ]
Michel, B. [2 ]
机构
[1] Univ Toulouse, INSA Toulouse, Inst Math Toulouse, F-31077 Toulouse 4, France
[2] Univ Paris 06, Lab Stat Theor & Appl, F-75252 Paris 05, France
关键词
Rate adaptive density estimation; gaussian mixture clustering; hellinger risk; non asymptotic model selection; DIRICHLET MIXTURES; CONVERGENCE; RATES;
D O I
10.1051/ps/2012018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally beta-Holder with moment and tail conditions are considered. We show that this penalized estimator is minimax adaptive to the beta regularity of such densities in the Hellinger sense.
引用
收藏
页码:698 / 724
页数:27
相关论文
共 50 条
  • [1] Regression density estimation using smooth adaptive Gaussian mixtures
    Villani, Mattias
    Kohn, Robert
    Giordani, Paolo
    JOURNAL OF ECONOMETRICS, 2009, 153 (02) : 155 - 173
  • [2] Pseudo-density estimation for clustering with Gaussian processes
    Kim, Hyun-Chul
    Lee, Jaewook
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1238 - 1243
  • [3] Probability density estimation using a Gaussian clustering algorithm
    Cwik, J
    Koronacki, J
    NEURAL COMPUTING & APPLICATIONS, 1996, 4 (03): : 149 - 160
  • [4] Differentially Private Density Estimation via Gaussian Mixtures Model
    Wu, Yuncheng
    Wu, Yao
    Peng, Hui
    Zeng, Juru
    Chen, Hong
    Li, Cuiping
    2016 IEEE/ACM 24TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2016,
  • [5] Adaptive Bayesian multivariate density estimation with Dirichlet mixtures
    Shen, Weining
    Tokdar, Surya T.
    Ghosal, Subhashis
    BIOMETRIKA, 2013, 100 (03) : 623 - 640
  • [6] Local Adaptive and Incremental Gaussian Mixture for Online Density Estimation
    Qiu, Tianyu
    Shen, Furao
    Zhao, Jinxi
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 418 - 428
  • [7] An accelerated algorithm for density estimation in large databases using Gaussian mixtures
    Soto, Alvaro
    Zavala, Felipe
    Araneda, Anita
    CYBERNETICS AND SYSTEMS, 2007, 38 (02) : 123 - 139
  • [8] Adaptive Bayesian density estimation with location-scale mixtures
    Kruijer, Willem
    Rousseau, Judith
    van der Vaart, Aad
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1225 - 1257
  • [9] Density boosting for Gaussian mixtures
    Song, XB
    Yang, K
    Pavel, M
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 508 - 515
  • [10] Adaptive estimation of the spectral density of weakly or strongly dependent Gaussian process
    Soulier, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 733 - 736