Automatic Segmentation of Corneal Microlayers on Optical Coherence Tomography Images

被引:14
|
作者
Elsawy, Amr [1 ,2 ]
Abdel-Mottaleb, Mohamed [2 ]
Sayed, Ibrahim-Osama [1 ]
Wen, Dan [1 ]
Roongpoovapatr, Vatookarn [1 ]
Eleiwa, Taher [1 ,3 ]
Sayed, Ahmed M. [1 ,4 ]
Raheem, Mariam [1 ]
Gameiro, Gustavo [1 ]
Abou Shousha, Mohamed [1 ,2 ,5 ]
机构
[1] Univ Miami, Miller Sch Med, Bascom Palmer Eye Inst, 900 Northwest 17th St, Miami, FL 33136 USA
[2] Univ Miami, Elect & Comp Engn, Coral Gables, FL 33136 USA
[3] Benha Fac Med, Ophthalmol Dept, Banha, Egypt
[4] Helwan Univ, Fac Engn, Biomed Engn Dept, Helwan, Egypt
[5] Univ Miami, Biomed Engn, Coral Gables, FL 33136 USA
来源
关键词
OCT imaging; segmentation; corneal microlayers; IN-VIVO CHARACTERISTICS; TOPOGRAPHIC THICKNESS; DIAGNOSIS; MEMBRANE; LAYER; OCT;
D O I
10.1167/tvst.8.3.39
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To propose automatic segmentation algorithm (AUS) for corneal microlayers on optical coherence tomography (OCT) images. Methods: Eighty-two corneal OCT scans were obtained from 45 patients with normal and abnormal corneas. Three testing data sets totaling 75 OCT images were randomly selected. Initially, corneal epithelium and endothelium microlayers are estimated using a corneal mask and locally refined to obtain final segmentation. Flat-epithelium and flat-endothelium images are obtained and vertically projected to locate inner corneal microlayers. Inner microlayers are estimated by translating epithelium and endothelium microlayers to detected locations then refined to obtain final segmentation. Images were segmented by trained manual operators (TMOs) and by the algorithm to assess repeatability (i.e., intraoperator error), reproducibility (i.e., interoperator and segmentation errors), and running time. A random masked subjective test was conducted by corneal specialists to subjectively grade the segmentation algorithm. Results: Compared with the TMOs, the AUS had significantly less mean intraoperator error (0.53 +/- 1.80 vs. 2.32 +/- 2.39 pixels; P < 0.0001), it had significantly different mean segmentation error (3.44 +/- 3.46 vs. 2.93 +/- 3.02 pixels; P < 0.0001), and it had significantly less running time per image (0.19 +/- 0.07 vs. 193.95 +/- 194.53 seconds; P < 0.0001). The AUS had insignificant subjective grading for microlayer-segmentation grading (4.94 +/- 032 vs. 4.96 +/- 0.24; P = 0.5081), but it had significant subjective grading for regional-segmentation grading (4.96 +/- 0.26 vs. 4.79 +/- 0.60; P = 0.025). Conclusions: The AUS can reproduce the manual segmentation of corneal microlayers with comparable accuracy in almost real-time and with significantly better repeatability. Translational Relevance: The AUS can be useful in clinical settings and can aid the diagnosis of corneal diseases by measuring thickness of segmented corneal microlayers.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Enhancement of Corneal Visibility in Optical Coherence Tomography Images with Corneal Opacification
    Chung, Cheuk Wang
    Ang, Marcus
    Farook, Mohamed
    Strouthidis, Nicholas G.
    Mehta, Joddhbir S.
    Mari, Jean Martial
    Girard, Michael J. A.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2016, 5 (05):
  • [22] Automatic segmentation of choroidal thickness in optical coherence tomography
    Alonso-Caneiro, David
    Read, Scott A.
    Collins, Michael J.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (12): : 2795 - 2812
  • [23] Automatic choroidal thickness segmentation in optical coherence tomography
    Alonso-Caneiro, David
    Read, Scott A.
    Collins, Michael J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [24] Retinal Layer Segmentation in Optical Coherence Tomography Images
    Dodo, Bashir Isa
    Li, Yongmin
    Kaba, Djibril
    Liu, Xiaohui
    IEEE ACCESS, 2019, 7 : 152388 - 152398
  • [25] Automated Layer Segmentation of Optical Coherence Tomography Images
    Lu, Shijian
    Liu, Jiang
    Lim, Joo Hwee
    Cheung, Carol
    Wong, Tien Yin
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 291 - +
  • [26] Automated Denoising and Segmentation of Optical Coherence Tomography Images
    Roychowdhury, Sohini
    Koozekanani, Dara D.
    Parhi, Keshab K.
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 258 - 262
  • [27] Automated Layer Segmentation of Optical Coherence Tomography Images
    Lu, Shijian
    Cheung, Carol Yim-lui
    Liu, Jiang
    Lim, Joo Hwee
    Leung, Christopher Kai-shun
    Wong, Tien Yin
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (10) : 2605 - 2608
  • [28] Automatic Cysts Detection in Optical Coherence Tomography Images
    Wieclawek, Wojciech
    2015 22ND INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS (MIXDES), 2015, : 79 - 82
  • [29] Automatic Identification of Parathyroid in Optical Coherence Tomography Images
    Hou, Fang
    Yu, Yang
    Liang, Yanmei
    LASERS IN SURGERY AND MEDICINE, 2017, 49 (03) : 305 - 311
  • [30] Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning
    Masood, Saleha
    Fang, Ruogu
    Li, Ping
    Li, Huating
    Sheng, Bin
    Mathavan, Akash
    Wang, Xiangning
    Yang, Po
    Wu, Qiang
    Qin, Jing
    Jia, Weiping
    SCIENTIFIC REPORTS, 2019, 9 (1)