Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator

被引:38
|
作者
Deng, Weili [1 ]
Zhang, Binbin [1 ]
Jin, Long [1 ]
Chen, Yueqi [2 ]
Chu, Wenjun [2 ]
Zhang, Haitao [1 ]
Zhu, Minhao [1 ,3 ]
Yang, Weiqing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[3] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnO microballoon arrays; triboelectric nanogenerator; PDMS; PTFE; pyramids; WATER-WAVE ENERGY; ACTIVE SENSORS; GENERATOR; ELECTRIFICATION; CONVERSION; SYSTEM; DRIVEN;
D O I
10.1088/1361-6528/aa5f34
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, triboelectric nanogenerators (TENGs), harvesting energy from the environment as a sustainable power source, have attracted great attention. Currently, many reports focus on the effect of surface modification on the electrical output performance of the TENG. In this work, we have fabricated vertically grown ZnO microballoon (ZnOMB) arrays on top of pyramid-featured PDMS patterned film, contacted with PTFE film to construct the TENG. The electrical output performances of the designed TENG are presented under external forces with different frequencies. The corresponding output open-circuit voltage with ZnOMBs could reach about 57 V the current density about 59 mA m(-2) at 100 Hz, which was about 2.3 times higher than without any ZnO. The global maximum of the instantaneous peak power could reach 1.1Wm(-2) when the external load resistance was about 2M Omega. Furthermore, the electrical output of the fabricated device could light 30 commercial LED bulbs without any rectifier circuits or energy-storage elements. This clearly suggests that this kind of surface modification can dramatically enhance the output performance of the TENG. Moreover, the design of TENG demonstrated here can be applied to various energy harvesting applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Recent advancements for improving the performance of triboelectric nanogenerator devices
    Lone, Shahbaz Ahmad
    Lim, Kee Chin
    Kaswan, Kuldeep
    Chatterjee, Subhodeep
    Fan, Kai-Po
    Choi, Dongwhi
    Lee, Sangmin
    Zhang, Hulin
    Cheng, Jia
    Lin, Zong-Hong
    NANO ENERGY, 2022, 99
  • [42] MXene based mechanically and electrically enhanced film for triboelectric nanogenerator
    Yuyu Gao
    Guoxu Liu
    Tianzhao Bu
    Yaoyao Liu
    Youchao Qi
    Yanting Xie
    Shaohang Xu
    Weili Deng
    Weiqing Yang
    Chi Zhang
    Nano Research, 2021, 14 : 4833 - 4840
  • [43] Vertically integrated nanogenerator based on ZnO nanowire arrays
    Yu, Aifang
    Li, Hongyu
    Tang, Haoying
    Liu, Tengjiao
    Jiang, Peng
    Wang, Zhong Lin
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (04): : 162 - 164
  • [44] Dielectric-elastomer-enhanced triboelectric nanogenerator with amplified outputs
    Haroun, Ahmed
    Lee, Chengkuo
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 333
  • [45] MXene based mechanically and electrically enhanced film for triboelectric nanogenerator
    Gao, Yuyu
    Liu, Guoxu
    Bu, Tianzhao
    Liu, Yaoyao
    Qi, Youchao
    Xie, Yanting
    Xu, Shaohang
    Deng, Weili
    Yang, Weiqing
    Zhang, Chi
    NANO RESEARCH, 2021, 14 (12) : 4833 - 4840
  • [46] Influence of Surface Functional Groups of ZnO Nanorods on the Performance of Cellulose Paper-Based Flexible Triboelectric Nanogenerator
    Mayu, Tai
    Narzary, Ringshar
    Chekke, Tani
    Das, Upamanyu
    Bayan, Sayan
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2022, 21 (04)
  • [47] Sandwich as a triboelectric nanogenerator
    Jiao, Jingyi
    Lu, Qixin
    Wang, Zhonglin
    Qin, Yong
    Cao, Xia
    NANO ENERGY, 2021, 79
  • [48] A Wireless Triboelectric Nanogenerator
    Mallineni, Sai Sunil Kumar
    Dong, Yongchang
    Behlow, Herbert
    Rao, Apparao M.
    Podila, Ramakrishna
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [49] Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting
    Yar, Adem
    Kinas, Zeynep
    Karabiber, Abdulkerim
    Ozen, Abdurrahman
    Okbaz, Abdulkerim
    Ozel, Faruk
    RENEWABLE ENERGY, 2021, 179 : 1781 - 1792
  • [50] Enhanced energy harvesting performance of triboelectric nanogenerator via efficient dielectric modulation dominated by interfacial interaction
    Song, Zhongqian
    Li, Weiyan
    Kong, Huijun
    Bao, Yu
    Wang, Ning
    Wang, Wei
    Ma, Yingming
    He, Ying
    Gan, Shiyu
    Niu, Li
    NANO ENERGY, 2022, 92