Approximations and lower bounds for the length of minimal Euclidean Steiner trees

被引:2
|
作者
Rubinstein, J. H. [1 ]
Weng, J.
Wormald, N.
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, ARC Special Res Ctr Ultrabroadband Informat Netwo, Parkville, Vic 3010, Australia
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
澳大利亚研究理事会;
关键词
8;
D O I
10.1007/s10898-005-4207-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We give a new lower bound on the length of the minimal Steiner tree with a given topology joining given terminals in Euclidean space, in terms of toroidal images. The lower bound is equal to the length when the topology is full. We use the lower bound to prove bounds on the "error" e in the length of an approximate Steiner tree, in terms of the maximum deviation d of an interior angle of the tree from 120 degrees. Such bounds are useful for validating algorithms computing minimal Steiner trees. In addition we give a number of examples illustrating features of the relationship between e and d, and make a conjecture which, if true, would somewhat strengthen our bounds on the error.
引用
收藏
页码:573 / 592
页数:20
相关论文
共 50 条
  • [31] Grade of service Euclidean Steiner minimum trees
    Xue, Guoliang
    Lin, Guo-Hui
    Du, Ding-Zhu
    Proceedings - IEEE International Symposium on Circuits and Systems, 1999, 6
  • [32] Computing Euclidean Steiner trees over segments
    Althaus, Ernst
    Rauterberg, Felix
    Ziegler, Sarah
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2020, 8 (3-4) : 309 - 325
  • [33] EUCLIDEAN STEINER SHALLOW-LIGHT TREES
    Solomon, Shay
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2015, 6 (02) : 113 - 139
  • [34] Grade of service euclidean Steiner minimum trees
    Xue, GL
    Lin, GH
    Du, DZ
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 6: CIRCUITS ANALYSIS, DESIGN METHODS, AND APPLICATIONS, 1999, : 182 - 185
  • [35] Approximation of Steiner Minimum Trees in Euclidean Planar Graphs Using Euclidian Steiner Minimum Trees
    Zenker, Bjoern
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 931 - 932
  • [36] Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners
    Dinitz, Yefim
    Elkin, Michael
    Solomon, Shay
    PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 519 - 528
  • [37] GENERATION OF MINIMAL TREES WITH A STEINER TOPOLOGY
    CHANG, SK
    JOURNAL OF THE ACM, 1972, 19 (04) : 699 - &
  • [38] ADVANCE IN COMPUTATION OF STEINER MINIMAL TREES
    BOYCE, WM
    SEERY, JB
    SIAM REVIEW, 1974, 16 (01) : 117 - 117
  • [39] COMPLEXITY OF COMPUTING STEINER MINIMAL TREES
    GAREY, MR
    GRAHAM, RL
    JOHNSON, DS
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) : 835 - 859
  • [40] STEINER MINIMAL TREES WITH RECTILINEAR DISTANCE
    HWANG, FK
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) : 104 - 115