Approximations and lower bounds for the length of minimal Euclidean Steiner trees

被引:2
|
作者
Rubinstein, J. H. [1 ]
Weng, J.
Wormald, N.
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, ARC Special Res Ctr Ultrabroadband Informat Netwo, Parkville, Vic 3010, Australia
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
澳大利亚研究理事会;
关键词
8;
D O I
10.1007/s10898-005-4207-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We give a new lower bound on the length of the minimal Steiner tree with a given topology joining given terminals in Euclidean space, in terms of toroidal images. The lower bound is equal to the length when the topology is full. We use the lower bound to prove bounds on the "error" e in the length of an approximate Steiner tree, in terms of the maximum deviation d of an interior angle of the tree from 120 degrees. Such bounds are useful for validating algorithms computing minimal Steiner trees. In addition we give a number of examples illustrating features of the relationship between e and d, and make a conjecture which, if true, would somewhat strengthen our bounds on the error.
引用
收藏
页码:573 / 592
页数:20
相关论文
共 50 条
  • [21] Upper and Lower Bounds for the Lengths of Steiner Trees in 3-Space
    M. Brazil
    D. A. Thomas
    J. F. Weng
    Geometriae Dedicata, 2004, 109 : 107 - 119
  • [22] Upper and lower bounds for the lengths of Steiner trees in 3-space
    Brazil, M
    Thomas, DA
    Weng, JF
    GEOMETRIAE DEDICATA, 2004, 109 (01) : 107 - 119
  • [23] Approximations for Steiner Trees with Minimum Number of Steiner Points
    DONGHUI CHEN
    DING-ZHU DU
    XIAO-DONG HU
    GUO-HUI LIN
    LUSHENG WANG
    GUOLIANG XUE
    Journal of Global Optimization, 2000, 18 : 17 - 33
  • [24] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DH
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) : 83 - 99
  • [25] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DG
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) : 17 - 33
  • [26] Bifurcations of Steiner minimal trees and minimal fillings for non-convex four-point boundaries and Steiner subratio for the Euclidean plane
    Stepanova, E. I.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2016, 71 (02) : 79 - 81
  • [28] Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners
    Dinitz, Yefim
    Elkin, Michael
    Solomon, Shay
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (04) : 736 - 783
  • [29] Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners
    Yefim Dinitz
    Michael Elkin
    Shay Solomon
    Discrete & Computational Geometry, 2010, 43 : 736 - 783
  • [30] Geometric conditions for Euclidean Steiner trees in Rd
    Van Laarhoven, Jon W.
    Anstreicher, Kurt M.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (05): : 520 - 531