Further approximations on Durrmeyer modification of Szasz-Mirakjan operators

被引:2
|
作者
Yadav, Rishikesh [1 ]
Meher, Ramakanta [1 ]
Mishra, Vishnu Narayan [2 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol Surat, Appl Math & Humanities Dept, Surat 395007, Gujarat, India
[2] Indira Gandhi Natl Tribal Univ, Dept Math, Anuppur 484887, Madhya Pradesh, India
来源
关键词
Szasz-Mirakjan operators; rate of convergence; Peetres K-functional; function of bounded variation; CONVERGENCE;
D O I
10.29020/nybg.ejpam.v13i5.3728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to determine the approximations of Durrmeyer modification of Szasz-Mirakjan operators, defined by Mishra et al. (Boll. Unione Mat. Ital. (2016) 8(4):297-305). We estimate the order of approximation of the operators for the functions belonging to the different spaces. Here, the rate of convergence of the said operators is established by means of the function with derivative of the bounded variation. At last, the graphical analysis is discussed to support the approximation results of the operators.
引用
收藏
页码:1306 / 1324
页数:19
相关论文
共 50 条
  • [41] SOME APPROXIMATION RESULTS FOR OPERATORS OF SZASZ-MIRAKJAN-DURRMEYER TYPE
    Krech, Grazyna
    MATHEMATICA SLOVACA, 2016, 66 (04) : 945 - 958
  • [42] APPROXIMATION BY SZASZ-MIRAKJAN-DURRMEYER OPERATORS BASED ON SHAPE PARAMETER λ
    Aslan, Resat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 407 - 421
  • [43] Simultaneous approximation by Szasz-Mirakjan-Stancu-Durrmeyer type operators
    Mishra, Vishnu Narayan
    Gandhi, R. B.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 118 - 127
  • [44] ON THE CONVERGENCE OF THE MODIFIED SZASZ-MIRAKJAN OPERATOR
    Sun Xiehua China Institute of Metrology
    ApproximationTheoryanditsApplications, 1994, (01) : 20 - 25
  • [45] Szasz-Mirakjan-Durrmeyer operators defined by multiple Appell polynomials
    Abel, Ulrich
    Agratini, Octavian
    Paltanea, Radu
    POSITIVITY, 2025, 29 (01)
  • [46] ON APPROXIMATION PROPERTIES OF STANCU VARIANT λ-SZASZ-MIRAKJAN-DURRMEYER OPERATORS
    Aslan, Resat
    Rathour, Laxmi
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (03): : 539 - 553
  • [47] Approximation Properties of an Extended Family of the Szasz-Mirakjan Beta-Type Operators
    Srivastava, Hari Mohan
    Icoz, Gurhan
    Cekim, Bayram
    AXIOMS, 2019, 8 (04)
  • [49] ASYMPTOTIC PROPERTIES OF KANTOROVICH-TYPE SZASZ-MIRAKJAN OPERATORS OF HIGHER ORDER
    Abel, Ulrich
    Agratini, Octavian
    Ivan, Mircea
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (03): : 290 - 302
  • [50] Approximation Properties by Szasz-Mirakjan Operators to Bivariate Functions via Dunkl Analogue
    Nasiruzzaman, Md.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (01): : 259 - 269