Further approximations on Durrmeyer modification of Szasz-Mirakjan operators

被引:2
|
作者
Yadav, Rishikesh [1 ]
Meher, Ramakanta [1 ]
Mishra, Vishnu Narayan [2 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol Surat, Appl Math & Humanities Dept, Surat 395007, Gujarat, India
[2] Indira Gandhi Natl Tribal Univ, Dept Math, Anuppur 484887, Madhya Pradesh, India
来源
关键词
Szasz-Mirakjan operators; rate of convergence; Peetres K-functional; function of bounded variation; CONVERGENCE;
D O I
10.29020/nybg.ejpam.v13i5.3728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to determine the approximations of Durrmeyer modification of Szasz-Mirakjan operators, defined by Mishra et al. (Boll. Unione Mat. Ital. (2016) 8(4):297-305). We estimate the order of approximation of the operators for the functions belonging to the different spaces. Here, the rate of convergence of the said operators is established by means of the function with derivative of the bounded variation. At last, the graphical analysis is discussed to support the approximation results of the operators.
引用
收藏
页码:1306 / 1324
页数:19
相关论文
共 50 条
  • [21] ON THE APPROXIMATION OF CONTINUOUS-FUNCTIONS BY SZASZ-MIRAKJAN OPERATORS
    AMANOV, NT
    DOKLADY AKADEMII NAUK SSSR, 1987, 293 (01): : 11 - 14
  • [22] THE VORONOVSKAJA TYPE THEOREM FOR AN EXTENSION OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu
    Barbosu, Dan
    Miclaus, Dan
    DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 107 - 115
  • [23] On a Kantorovich Variant of (p,q)-Szasz-Mirakjan Operators
    Mursaleen, M.
    Alotaibi, Abdullah
    Ansari, Khursheed J.
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [24] GLOBAL APPROXIMATION RESULTS FOR MODIFIED SZASZ-MIRAKJAN OPERATORS
    Duman, Oktay
    Ozarslan, Mehmet Ali
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 75 - 86
  • [25] Dunkl analogue of Szasz-Mirakjan operators of blending type
    Deshwal, Sheetal
    Agrawal, P. N.
    Araci, Serkan
    OPEN MATHEMATICS, 2018, 16 : 1344 - 1356
  • [26] Approximation with an arbitrary order by generalized Szasz-Mirakjan operators
    Gal, Sorin G.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (01): : 77 - 81
  • [27] THE VORONOVSKAJA TYPE THEOREM FOR A GENERAL CLASS OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu T.
    Miclaus, Dan
    Barbosu, Dan
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 219 - 231
  • [28] (p, q)-Generalization of Szasz-Mirakjan operators and their approximation properties
    Kara, Mustafa
    Mahmudov, Nazim, I
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [29] Convergence of Bi-shift Localized Szasz-Mirakjan Operators
    Xie, Linsen
    Xie, Tingfan
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [30] APPROXIMATION OF GENERALIZED SZASZ-MIRAKJAN OPERATORS DEPENDING ON CERTAIN PARAMETERS
    Qasim, M.
    Mursaleen, M.
    Khan, A.
    Abbas, Z.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 139 - 155