An Adaptive Refinement Scheme for Radial Basis Function Collocation

被引:0
|
作者
Cavoretto, Roberto [1 ]
De Rossi, Alessandra [1 ]
机构
[1] Univ Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
来源
NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I | 2020年 / 11973卷
关键词
Meshfree methods; Adaptive algorithms; Refinement techniques; Elliptic PDEs;
D O I
10.1007/978-3-030-39081-5_3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present an adaptive refinement algorithm for solving elliptic partial differential equations via a radial basis function (RBF) collocation method. The adaptive scheme is based on the use of an error indicator, which is characterized by the comparison of two RBF collocation solutions evaluated on a coarser set and a finer one. This estimate allows us to detect the domain parts that need to be refined by adding points in the selected areas. Numerical results support our study and point out the effectiveness of our algorithm.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 50 条
  • [31] Meshfree explicit local radial basis function collocation method for diffusion problems
    Sarler, B.
    Vertnik, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (08) : 1269 - 1282
  • [32] Local radial basis function collocation method for stokes equations with interface conditions
    Ahmad, Masood
    Siraj-ul-Islam
    Ullah, Baseer
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 119 : 246 - 256
  • [33] Radial basis function collocation method solution of natural convection in porous media
    Sarler, B
    Perko, J
    Chen, CS
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2004, 14 (02) : 187 - 212
  • [34] The Quasi-Optimal Radial Basis Function Collocation Method: A Technical Note
    Zhang, Juan
    Sun, Mei
    Hou, Enran
    Ma, Zhaoxing
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [35] Local radial basis function collocation method for bending analyses of quasicrystal plates
    Chiang, Y. C.
    Young, D. L.
    Sladek, J.
    Sladek, V.
    APPLIED MATHEMATICAL MODELLING, 2017, 50 : 463 - 483
  • [36] Dantzig-Selector Radial Basis Function Learning with Nonconvex Refinement
    Ghosh, Tomojit
    Kirby, Michael
    Ma, Xiaofeng
    ADVANCES IN TIME SERIES ANALYSIS AND FORECASTING, 2017, : 313 - 327
  • [37] Adaptive radial basis function emulators for robust design
    Bates, RA
    Wynn, HP
    EVOLUTIONARY DESIGN AND MANUFACTURE, 2000, : 343 - 350
  • [38] Adaptive Learning for Robust Radial Basis Function Networks
    Seghouane, Abd-Krim
    Shokouhi, Navid
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (05) : 2847 - 2856
  • [39] Adaptive image classification with radial basis function network
    Pun, CM
    PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND IMAGING, 2004, : 389 - 394
  • [40] ADAPTIVE RADIAL BASIS FUNCTION NONLINEARITIES, AND THE PROBLEM OF GENERALIZATION
    LOWE, D
    FIRST IEE INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1989, : 171 - 175