Dantzig-Selector Radial Basis Function Learning with Nonconvex Refinement

被引:1
|
作者
Ghosh, Tomojit [1 ]
Kirby, Michael [1 ]
Ma, Xiaofeng [1 ]
机构
[1] Colorado State Univ, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Dantzig-Selector; Chaotic time-series prediction; Sparse radial basis functions; Model order selection; Mackey-Glass equation; ALGORITHM; RECONSTRUCTION; APPROXIMATION; REDUCTION; NETWORKS;
D O I
10.1007/978-3-319-55789-2_22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the problem of constructing nonlinear relationships in complex time-dependent data. We present an approach for learning nonlinear mappings that combines convex optimization for the model order selection problem followed by non-convex optimization for model refinement. This approach exploits the linear system that arises with radial basis function approximations. The first phase of the learning employs the Dantzig-Selector convex optimization problem to determine the number and candidate locations of the RBFs. At this preliminary stage maintaining the supervised learning relationships is not part of the objective function but acts as a constraint in the optimization problem. The model refinement phase is a non-convex optimization problem the goal of which is to optimize the shape and location parameters of the skew RBFs. We demonstrate the algorithm on on the Mackey-Glass chaotic time-series where we explore time-delay embedding models in both three and four dimensions. We observe that the initial centers obtained by the Dantzig-Selector provide favorable initial conditions for the non-convex refinement problem.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 50 条
  • [1] Nonconvex Dantzig selector and its parallel computing algorithm
    Wen, Jiawei
    Yang, Songshan
    Zhao, Delin
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [2] 一种解Dantzig-Selector模型的快速分解算法
    张乾
    何岸
    何洪津
    杭州电子科技大学学报(自然科学版), 2016, 36 (01) : 97 - 102
  • [3] An Adaptive Refinement Scheme for Radial Basis Function Collocation
    Cavoretto, Roberto
    De Rossi, Alessandra
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 19 - 26
  • [4] 一种在紧框架下求解Analysis Dantzig-selector模型的快速算法
    宋儒瑛
    张春晓
    中央民族大学学报(自然科学版), 2021, (01) : 5 - 9
  • [5] Online learning in radial basis function networks
    Freeman, JAS
    Saad, D
    NEURAL COMPUTATION, 1997, 9 (07) : 1601 - 1622
  • [6] LEARNING AND GENERALIZATION IN RADIAL BASIS FUNCTION NETWORKS
    FREEMAN, JAS
    SAAD, D
    NEURAL COMPUTATION, 1995, 7 (05) : 1000 - 1020
  • [7] Learning in Deep Radial Basis Function Networks
    Wurzberger, Fabian
    Schwenker, Friedhelm
    ENTROPY, 2024, 26 (05)
  • [8] Learning methods for radial basis function networks
    Neruda, R
    Kudová, P
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2005, 21 (07): : 1131 - 1142
  • [9] Learning identity with radial basis function networks
    Howell, AJ
    Buxton, H
    NEUROCOMPUTING, 1998, 20 (1-3) : 15 - 34
  • [10] Radial basis function networks and complexity regularization in function learning
    Krzyzak, A
    Linder, T
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (02): : 247 - 256