A fixed point theorem and the Hyers-Ulam stability in Riesz spaces

被引:7
|
作者
Batko, Bogdan [1 ,2 ]
Brzdek, Janusz [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
[2] WSB NLU, Dept Math, PL-33300 Nowy Sacz, Poland
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2013年
关键词
Hyers-Ulam type stability; fixed point; Riesz space; square symmetric groupoid; CAUCHY FUNCTIONAL-EQUATION;
D O I
10.1186/1687-1847-2013-138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a fixed point theorem and show its applications in investigations of the Hyers-Ulam type stability of some functional equations (in single and many variables) in Riesz spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Hyers-Ulam stability of spherical functions
    Bouikhalene, Belaid
    Eloqrachi, Elhoucien
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (02) : 181 - 189
  • [42] Hyers-Ulam stability and discrete dichotomy
    Barbu, Dorel
    Buse, Constantin
    Tabassum, Afshan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1738 - 1752
  • [43] Hyers-Ulam stability for quantum equations
    Anderson, Douglas R.
    Onitsuka, Masakazu
    AEQUATIONES MATHEMATICAE, 2021, 95 (02) : 201 - 214
  • [44] (Lp, Lq) HYERS-ULAM STABILITY
    Dragicevic, Davor
    Onitsuka, Masakazu
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [45] Generalized Dichotomies and Hyers-Ulam Stability
    Dragicevic, Davor
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [46] Hyers-Ulam stability with respect to gauges
    Brzdek, Janusz
    Popa, Dorian
    Rasa, Ioan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 620 - 628
  • [47] HYERS-ULAM STABILITY OF BABBAGE EQUATION
    Palanivel, Rajendran
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 731 - 737
  • [48] The Hyers-Ulam stability of nonlinear recurrences
    Brzdek, Janusz
    Popa, Dorian
    Xu, Bing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) : 443 - 449
  • [49] HYERS-ULAM STABILITY OF THE LAPLACE OPERATOR
    Popa, Dorian
    Rasa, Ioan
    FIXED POINT THEORY, 2018, 19 (01): : 379 - 382
  • [50] HYERS-ULAM STABILITY OF A POLYNOMIAL EQUATION
    Li, Yongjin
    Hua, Liubin
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02): : 86 - 90