A fixed point theorem and the Hyers-Ulam stability in Riesz spaces

被引:7
|
作者
Batko, Bogdan [1 ,2 ]
Brzdek, Janusz [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
[2] WSB NLU, Dept Math, PL-33300 Nowy Sacz, Poland
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2013年
关键词
Hyers-Ulam type stability; fixed point; Riesz space; square symmetric groupoid; CAUCHY FUNCTIONAL-EQUATION;
D O I
10.1186/1687-1847-2013-138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a fixed point theorem and show its applications in investigations of the Hyers-Ulam type stability of some functional equations (in single and many variables) in Riesz spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Hyers-Ulam stability of quadratic functional equations in paranormed spaces
    Choi, Jinwoo
    Yang, Joon Hyuk
    Park, Choonkil
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (03) : 461 - 467
  • [32] Hyers-Ulam stability of Sahoo-Riedel's point
    Lee, W.
    Xu, S.
    Ye, F.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (11) : 1649 - 1652
  • [33] A fixed point theorem in gauge spaces and applications to Ulam-Hyers-Rassias-stability of delay differential equations
    Benzarouala, Chaimaa
    Oubbi, Lahbib
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [34] A New Fixed Point Theorem and a New Generalized Hyers-Ulam-Rassias Stability in Incomplete Normed Spaces
    Ramezani, Maryam
    Ege, Ozgur
    De la Sen, Manuel
    MATHEMATICS, 2019, 7 (11)
  • [35] A Fixed Point Approach to the Generalized Hyers-Ulam Stability of Reciprocal Difference and Adjoint Functional Equations
    Ravi, K.
    Rassias, J. M.
    Kumar, B. V. Senthil
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (03): : 469 - 481
  • [36] Hyers-Ulam Stability of Additive Functional Equation Using Direct and Fixed-Point Methods
    Tamilvanan, K.
    Balasubramanian, G.
    Alessa, Nazek
    Loganathan, K.
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [37] Hyers-Ulam Stability of Polynomial Equations
    Bidkham, M.
    Mezerji, H. A. Soleiman
    Gordji, M. Eshaghi
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [38] Spectral characterizations for Hyers-Ulam stability
    Buse, Constantin
    Saierli, Olivia
    Tabassum, Afshan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (30) : 1 - 14
  • [39] On the Hyers-Ulam stability of a difference equation
    Jun, KW
    Kim, HM
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2005, 7 (04) : 397 - 407
  • [40] ON THE HYERS-ULAM STABILITY OF LINEAR MAPPINGS
    RASSIAS, TM
    SEMRL, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (02) : 325 - 338