Perturbations of Moore-Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces

被引:16
|
作者
Ma, Hai Feng [1 ]
Sun, Shuang [1 ]
Wang, Yu Wen [1 ]
Zheng, Wen Jing [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
[2] Hulunbuir Coll, Dept Math, Hailar 021008, Peoples R China
基金
美国国家科学基金会;
关键词
Banach space; Moore-Penrose metric generalized inverse; perturbation; SELECTIONS;
D O I
10.1007/s10114-014-3340-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the perturbations of the Moore-Penrose metric generalized inverses of linear operators in Banach spaces are described. The Moore-Penrose metric generalized inverse is homogeneous and nonlinear in general, and the proofs of our results are different from linear generalized inverses. By using the quasi-additivity of Moore-Penrose metric generalized inverse and the theorem of generalized orthogonal decomposition, we show some error estimates of perturbations for the single-valued Moore-Penrose metric generalized inverses of bounded linear operators. Furthermore, by means of the continuity of the metric projection operator and the quasi-additivity of Moore-Penrose metric generalized inverse, an expression for Moore-Penrose metric generalized inverse is given.
引用
收藏
页码:1109 / 1124
页数:16
相关论文
共 50 条
  • [41] PROJECTION METHODS FOR COMPUTING MOORE-PENROSE INVERSES OF UNBOUNDED OPERATORS
    Kulkarni, S. H.
    Ramesh, G.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (05): : 647 - 662
  • [42] Projection methods for computing Moore-Penrose inverses of unbounded operators
    S. H. Kulkarni
    G. Ramesh
    Indian Journal of Pure and Applied Mathematics, 2010, 41 : 647 - 662
  • [43] THE PRODUCT OF OPERATORS AND THEIR THE MOORE-PENROSE INVERSES ON HILBERT C*-MODULES
    Jalaeian, Maryam
    Karizaki, Mehdi Mohammadzadeh
    Hassani, Mahmoud
    OPERATORS AND MATRICES, 2021, 15 (01): : 341 - 355
  • [44] On stable perturbations for outer inverses of linear operators in Banach spaces
    Huang, Qianglian
    Zhu, Lanping
    Jiang, Yueyu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1942 - 1954
  • [45] A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators
    Sivakumar, K. C.
    POSITIVITY, 2009, 13 (01) : 277 - 286
  • [46] On the Uniform Boundedness and Convergence of Generalized, Moore-Penrose and Group Inverses
    Zhu, Lanping
    Zhu, Changpeng
    Huang, Qianglian
    FILOMAT, 2017, 31 (19) : 5993 - 6003
  • [47] SHARP NORM-ESTIMATIONS FOR MOORE-PENROSE INVERSES OF STABLE PERTURBATIONS OF HILBERT C*-MODULE OPERATORS
    Xu, Qingxiang
    Wei, Yimin
    Gu, Yangyang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4735 - 4758
  • [48] USE OF RESTRICTED MOORE-PENROSE INVERSES IN TESTING LINEAR HYPOTHESES
    HARTUNG, J
    WERNER, HJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T344 - T346
  • [49] On Moore-Penrose inverses over inclines
    Zhang, Limei
    Zhao, Jianli
    Qiao, Lishan
    Advances in Matrix Theory and Applications, 2006, : 131 - 134
  • [50] The Moore-Penrose inverses of split quaternions
    Cao, Wensheng
    Chang, Zhenhu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (09): : 1631 - 1647