Perturbations of Moore-Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces

被引:16
|
作者
Ma, Hai Feng [1 ]
Sun, Shuang [1 ]
Wang, Yu Wen [1 ]
Zheng, Wen Jing [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
[2] Hulunbuir Coll, Dept Math, Hailar 021008, Peoples R China
基金
美国国家科学基金会;
关键词
Banach space; Moore-Penrose metric generalized inverse; perturbation; SELECTIONS;
D O I
10.1007/s10114-014-3340-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the perturbations of the Moore-Penrose metric generalized inverses of linear operators in Banach spaces are described. The Moore-Penrose metric generalized inverse is homogeneous and nonlinear in general, and the proofs of our results are different from linear generalized inverses. By using the quasi-additivity of Moore-Penrose metric generalized inverse and the theorem of generalized orthogonal decomposition, we show some error estimates of perturbations for the single-valued Moore-Penrose metric generalized inverses of bounded linear operators. Furthermore, by means of the continuity of the metric projection operator and the quasi-additivity of Moore-Penrose metric generalized inverse, an expression for Moore-Penrose metric generalized inverse is given.
引用
收藏
页码:1109 / 1124
页数:16
相关论文
共 50 条
  • [31] The generalized Moore-Penrose inverses of matrices over rings
    Yuan, Wangui
    Liao, Zuhua
    Advances in Matrix Theory and Applications, 2006, : 289 - 292
  • [32] WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES
    Qin, Mengjie
    Xu, Qingxiang
    Zamani, Ali
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 691 - 706
  • [33] On the Weighted Moore-Penrose Inverses
    Xu, Zhaoliang
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 375 - 378
  • [34] Enclosing Moore-Penrose inverses
    Miyajima, Shinya
    CALCOLO, 2020, 57 (01)
  • [35] Sub-direct sum of operators on Hilbert spaces and nonnegative Moore-Penrose inverses
    Jose S.
    Sivakumar K.C.
    Acta Scientiarum Mathematicarum, 2015, 81 (1-2): : 215 - 240
  • [36] Representations for weighted Moore-Penrose inverses of partitioned adjointable operators
    Xu, Qingxiang
    Chen, Yonghao
    Song, Chuanning
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 10 - 30
  • [37] Equivalent Representation of the Moore-Penrose Metric Generalized Inverse of Linear Opeartor
    Ni, Renxing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 177 - 180
  • [38] Moore-Penrose inverses of Gram operators on Hilbert C*-modules
    Moslehian, M. S.
    Sharifi, K.
    Forough, M.
    Chakoshi, M.
    STUDIA MATHEMATICA, 2012, 210 (02) : 189 - 196
  • [39] A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators
    K. C. Sivakumar
    Positivity, 2009, 13 : 277 - 286
  • [40] CONE NONNEGATIVITY OF MOORE-PENROSE INVERSES OF UNBOUNDED GRAM OPERATORS
    Kurmayya, T.
    Ramesh, G.
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 338 - 347