Deep Reinforcement Learning-Guided Task Reverse Offloading in Vehicular Edge Computing

被引:3
|
作者
Gu, Anqi [1 ]
Wu, Huaming [1 ]
Tang, Huijun [1 ]
Tang, Chaogang [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of Vehicle; Vehicular Edge Computing; Reverse Offloading; Deep Reinforcement Learning; ALLOCATION; INTERNET;
D O I
10.1109/GLOBECOM48099.2022.10001474
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of Vehicular Edge Computing (VEC) provides great support for Collaborative Vehicle Infrastructure System (CVIS) and promotes the safety of autonomous driving. In CVIS, crowd-sensing data will be uploaded to the VEC server to fuse the data and generate tasks. However, when there are too many vehicles, it brings huge challenges for VEC to make proper decisions according to the information from vehicles and roadside infrastructure. In this paper, a reverse offloading framework is constructed, which comprehensively considers the relationship balance between task completion delay and the energy consumption of User Vehicle (UV). Furthermore, in order to minimize the overall system consumption, we establish an adaptive optimal reverse offloading strategy based on Deep Q-Network (DQN). Simulation results demonstrate that the proposed algorithm can effectively reduce the energy consumption and task delay, when compared with the full local and fixed offloading schemes.
引用
收藏
页码:2200 / 2205
页数:6
相关论文
共 50 条
  • [41] Online Learning Enabled Task Offloading for Vehicular Edge Computing
    Zhang, Rui
    Cheng, Peng
    Chen, Zhuo
    Liu, Sige
    Li, Yonghui
    Vucetic, Branka
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (07) : 928 - 932
  • [42] Federated Reinforcement Learning-Empowered Task Offloading for Large Models in Vehicular Edge Computing
    Wu, Huaming
    Gu, Anqi
    Liang, Yonghui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1979 - 1991
  • [43] Dynamic Vehicle Aware Task Offloading Based on Reinforcement Learning in a Vehicular Edge Computing Network
    Wang, Lingling
    Zhu, Xiumin
    Li, Nianxin
    Li, Yumei
    Ma, Shuyue
    Zhai, Linbo
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 263 - 270
  • [44] Priority-Aware Task Offloading in Vehicular Fog Computing Based on Deep Reinforcement Learning
    Shi, Jinming
    Du, Jun
    Wang, Jingjing
    Wang, Jian
    Yuan, Jian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 16067 - 16081
  • [45] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Gao, Xiaohu
    Ang, Mei Choo
    Althubiti, Sara A.
    JOURNAL OF GRID COMPUTING, 2023, 21 (04)
  • [46] Deep Reinforcement Learning for Dependent Task Offloading in Multi-Access Edge Computing
    Ye, Hengzhou
    Li, Jiaming
    Lu, Qiu
    IEEE ACCESS, 2024, 12 : 166281 - 166297
  • [47] Deep Reinforcement Learning for Energy-Efficient Task Offloading in Cooperative Vehicular Edge Networks
    Agbaje, Paul
    Nwafor, Ebelechukwu
    Olufowobi, Habeeb
    2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,
  • [48] A Deep-Reinforcement-Learning-Based Computation Offloading With Mobile Vehicles in Vehicular Edge Computing
    Lin, Jie
    Huang, Siqi
    Zhang, Hanlin
    Yang, Xinyu
    Zhao, Peng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15501 - 15514
  • [49] Deep-Reinforcement-Learning-Based Distributed Computation Offloading in Vehicular Edge Computing Networks
    Geng, Liwei
    Zhao, Hongbo
    Wang, Jiayue
    Kaushik, Aryan
    Yuan, Shuai
    Feng, Wenquan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12416 - 12433
  • [50] Task Offloading With Service Migration for Satellite Edge Computing: A Deep Reinforcement Learning Approach
    Wu, Haonan
    Yang, Xiumei
    Bu, Zhiyong
    IEEE ACCESS, 2024, 12 : 25844 - 25856