Online Learning Enabled Task Offloading for Vehicular Edge Computing

被引:35
|
作者
Zhang, Rui [1 ]
Cheng, Peng [1 ]
Chen, Zhuo [2 ]
Liu, Sige [1 ]
Li, Yonghui [1 ]
Vucetic, Branka [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2134, Australia
[2] CSIRO DATA61, Sydney, NSW 2122, Australia
基金
澳大利亚研究理事会;
关键词
Task analysis; Space exploration; Energy consumption; Benchmark testing; Edge computing; Central Processing Unit; Delays; Online learning; task offloading; vehicle edge computing;
D O I
10.1109/LWC.2020.2973985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicular edge computing pushes the cloud computing capability to the distributed network edge nodes, enabling computation-intensive and latency-sensitive computing services for smart vehicles through task offloading. However, the inherent mobility introduces fast variation of network structure, which are usually unknown a priori. In this letter, we formulate the vehicular task offloading as a mortal multi-armed bandit problem, and develop a new online algorithm to enable distributed decision making on the node selection. The key is to exploit the contextual information of edge nodes and transform the infinite exploration space to a finite one. Theoretically, we prove that the proposed algorithm has a sublinear learning regret. Simulation results verify its effectiveness.
引用
收藏
页码:928 / 932
页数:5
相关论文
共 50 条
  • [1] Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing
    Wang, Xiaojie
    Ning, Zhaolong
    Guo, Song
    Wang, Lei
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (02) : 598 - 611
  • [2] Imitation-Learning-Enabled Vehicular Edge Computing: Toward Online Task Scheduling
    Nie, Laisen
    Wang, Xiaojie
    Sun, Wentao
    Li, Yongkang
    Li, Shengtao
    Zhang, Peng
    IEEE NETWORK, 2021, 35 (03): : 102 - 108
  • [3] Deep Learning-Based Task Offloading for Vehicular Edge Computing
    Zeng, Feng
    Liu, Chengsheng
    Tangjiang, Junzhe
    Li, Wenjia
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 291 - 298
  • [4] Performance Assessment of Context-aware Online Learning for Task Offloading in Vehicular Edge Computing Systems
    Al-Tarawneh, Mutaz A. B.
    Alnawayseh, Saif E.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (04) : 304 - 320
  • [5] INTELLIGENT TASK OFFLOADING IN VEHICULAR EDGE COMPUTING NETWORKS
    Guo, Hongzhi
    Liu, Jiajia
    Ren, Ju
    Zhang, Yanning
    IEEE WIRELESS COMMUNICATIONS, 2020, 27 (04) : 126 - 132
  • [6] A Survey on Task Offloading Research in Vehicular Edge Computing
    Li Z.-Y.
    Wang Q.
    Chen Y.-F.
    Xie G.-Q.
    Li R.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (05): : 963 - 982
  • [7] Collaborative Task Offloading in Vehicular Edge Computing Networks
    Sun, Geng
    Zhang, Jiayun
    Sun, Zemin
    He, Long
    Li, Jiahui
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 592 - 598
  • [8] An efficient task offloading scheme in vehicular edge computing
    Raza, Salman
    Liu, Wei
    Ahmed, Manzoor
    Anwar, Muhammad Rizwan
    Mirza, Muhammad Ayzed
    Sun, Qibo
    Wang, Shangguang
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2020, 9 (01):
  • [9] Fully Distributed Task Offloading in Vehicular Edge Computing
    Ma, Qianpiao
    Xu, Hongli
    Wang, Haibo
    Xu, Yang
    Jia, Qingmin
    Qiao, Chunming
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5630 - 5646
  • [10] An efficient task offloading scheme in vehicular edge computing
    Salman Raza
    Wei Liu
    Manzoor Ahmed
    Muhammad Rizwan Anwar
    Muhammad Ayzed Mirza
    Qibo Sun
    Shangguang Wang
    Journal of Cloud Computing, 9