Crossover from quantum to Boltzmann transport in graphene

被引:76
|
作者
Adam, Shaffique [1 ]
Brouwer, Piet W. [2 ]
Das Sarma, S. [1 ]
机构
[1] Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA
[2] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 20期
关键词
electrical conductivity; graphene; GAS;
D O I
10.1103/PhysRevB.79.201404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compare a fully quantum-mechanical numerical calculation of the conductivity of graphene to the semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice spacing, we find quantitative agreement between the two approaches away from the Dirac point. At the Dirac point the two theories are incompatible at weak disorder, although they may be compatible for strong disorder. Our numerical calculations provide a quantitative description of the full crossover between the quantum and semiclassical graphene transport regimes.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Deterministic Solutions of the Boltzmann Equation for Charge Transport in Graphene on Substrates
    Majorana, Armando
    Mascali, Giovanni
    Romano, Vittorio
    2016 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD), 2016, : 269 - 272
  • [32] Quantum corrections in the Boltzmann conductivity of graphene and their sensitivity to the choice of formalism
    Kailasvuori, Janik
    Lueffe, Matthias C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [33] Microscopic theory for the quantum to classical crossover in chaotic transport
    Whitney, RS
    Jacquod, P
    PHYSICAL REVIEW LETTERS, 2005, 94 (11)
  • [34] Edge scattering of electrons in graphene: Boltzmann equation approach to the transport in graphene nanoribbons and nanodisks
    Dugaev, V. K.
    Katsnelson, M. I.
    PHYSICAL REVIEW B, 2013, 88 (23)
  • [35] Quantum critical transport in clean graphene
    Fritz, Lars
    Schmalian, Joerg
    Mueller, Markus
    Sachdev, Subir
    PHYSICAL REVIEW B, 2008, 78 (08):
  • [36] Quantum Transport Thermometry for Electrons in Graphene
    Kechedzhi, K.
    Horsell, D. W.
    Tikhonenko, F. V.
    Savchenko, A. K.
    Gorbachev, R. V.
    Lerner, I. V.
    Fal'ko, V. I.
    PHYSICAL REVIEW LETTERS, 2009, 102 (06)
  • [37] Wigner model for quantum transport in graphene
    Morandi, O.
    Schuerrer, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (26)
  • [38] Transport properties of graphene quantum dots
    Gonzalez, J. W.
    Pacheco, M.
    Rosales, L.
    Orellana, P. A.
    PHYSICAL REVIEW B, 2011, 83 (15)
  • [39] Transport through graphene quantum dots
    Guettinger, J.
    Molitor, F.
    Stampfer, C.
    Schnez, S.
    Jacobsen, A.
    Droescher, S.
    Ihn, T.
    Ensslin, K.
    REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (12)
  • [40] Mechanical Control of Quantum Transport in Graphene
    McRae, Andrew C.
    Wei, Guoqing
    Huang, Linxiang
    Yigen, Serap
    Tayari, Vahid
    Champagne, Alexandre R.
    ADVANCED MATERIALS, 2024, 36 (23)