Quantum Transport Thermometry for Electrons in Graphene

被引:37
|
作者
Kechedzhi, K. [1 ]
Horsell, D. W. [2 ]
Tikhonenko, F. V. [2 ]
Savchenko, A. K. [2 ]
Gorbachev, R. V. [2 ]
Lerner, I. V. [3 ]
Fal'ko, V. I. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England
[3] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
MAGNETIC-FIELD; FLUCTUATIONS; RELAXATION;
D O I
10.1103/PhysRevLett.102.066801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method of measuring the electron temperature T-e in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime (T-e approximate to T, the bath temperature). The method can be especially useful in case of overheating, T-e > T. It is based on analysis of the correlation function of mesoscopic conductance fluctuations. Although the fluctuation amplitude strongly depends on the details of electron scattering in graphene, we show that T-e extracted from the correlation function is insensitive to these details.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Analysis of models for quantum transport of electrons in graphene layers
    El Hajj, Raymond
    Méhats, Florian
    Mathematical Models and Methods in Applied Sciences, 2014, 24 (11) : 2287 - 2310
  • [2] Analysis of models for quantum transport of electrons in graphene layers
    El Hajj, Raymond
    Mehats, Florian
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (11): : 2287 - 2310
  • [3] Quantum transport of Dirac electrons in graphene in the presence of a spatially modulated magnetic field
    Tahir, M.
    Sabeeh, K.
    PHYSICAL REVIEW B, 2008, 77 (19)
  • [4] Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices
    Wang, Feiran
    Gosling, Jonathan H.
    Trindade, Gustavo F.
    Rance, Graham A.
    Makarovsky, Oleg
    Cottam, Nathan D.
    Kudrynskyi, Zakhar
    Balanov, Alexander G.
    Greenaway, Mark T.
    Wildman, Ricky D.
    Hague, Richard
    Tuck, Christopher
    Fromhold, T. Mark
    Turyanska, Lyudmila
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (05)
  • [5] Transport of the graphene electrons through a magnetic superlattice
    Wu, Quan-Sheng
    Zhang, Sheng-Nan
    Yang, Shi-Jie
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (48)
  • [6] Parallel transport of electrons in graphene parallels gravity
    Mesaros, Andrej
    Sadri, Darius
    Zaanen, Jan
    PHYSICAL REVIEW B, 2010, 82 (07):
  • [7] A kinetic model for the transport of electrons in a graphene layer
    Kammerer, Clotilde Fermanian
    Mehats, Florian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 450 - 483
  • [8] Confinement of Dirac electrons in graphene quantum dots
    Jolie, Wouter
    Craes, Fabian
    Petrovic, Marin
    Atodiresei, Nicolae
    Caciuc, Vasile
    Bluegel, Stefan
    Kralj, Marko
    Michely, Thomas
    Busse, Carsten
    PHYSICAL REVIEW B, 2014, 89 (15)
  • [9] Graphene, electrons, plasmons, and quantum: A perfect match
    Javier Gacia de Abajo, F.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C131 - C131
  • [10] Graphene bubbles and their role in graphene quantum transport
    Leconte, Nicolas
    Kim, Hakseong
    Kim, Ho-Jong
    Ha, Dong Han
    Watanabe, Kenji
    Taniguchi, Takashi
    Jung, Jeil
    Jung, Suyong
    NANOSCALE, 2017, 9 (18) : 6041 - 6047