A construction of regular magic squares of odd order

被引:3
|
作者
Chan, C. -Y. Jean [1 ]
Mainkar, Meera G. [1 ]
Narayan, Sivaram K. [1 ]
Webster, Jordan D. [2 ]
机构
[1] Cent Michigan Univ, Mt Pleasant, MI 48859 USA
[2] Mid Michigan Community Coll, Harrison, MI 48625 USA
关键词
Magic squares; Regular magic squares; Eigenvalues; Centroskew matrices; Circulant matrices;
D O I
10.1016/j.laa.2014.05.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A magic square is an n x n array of numbers whose rows, columns, and the two diagonals sum to mu. A regular magic square satisfies the condition that the entries symmetrically placed with respect to the center sum to 2 mu/n. Using circulant matrices we describe a construction of regular classical magic squares that are nonsingular for all odd orders. A similar construction is given that produces regular classical magic squares that are singular for odd composite orders. This paper is an extension of [3]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [31] Strong vertex-magic and edge-magic labelings of 2-regular graphs of odd order using Kotzig completion
    McQuillan, Dan
    McQuillan, James M.
    DISCRETE MATHEMATICS, 2018, 341 (01) : 194 - 202
  • [32] Avoiding Arrays of Odd Order by Latin Squares
    Andren, Lina J.
    Casselgren, Carl Johan
    Ohman, Lars-Daniel
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (02): : 184 - 212
  • [33] New complete Latin squares of odd order
    Ollis, M. A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 41 : 35 - 46
  • [34] On most perfect magic squares of order four
    Baksalary, Oskar Maria
    Trenkler, Dietrich
    Trenkler, Goetz
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (07): : 1411 - 1423
  • [35] Constructing all magic squares of order three
    Xin, Guoce
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3393 - 3398
  • [36] Basis properties of third order magic squares
    Shailesh A. Shirali
    Resonance, 2006, 11 (9) : 79 - 89
  • [37] The existence spectrum for regular sparse anti-magic squares
    Chen, Guangzhou
    Li, Wen
    Chen, Kejun
    Zhong, Ming
    DISCRETE MATHEMATICS, 2023, 346 (10)
  • [38] Regular sparse anti-magic squares with maximum density
    Chen, Kejun
    Li, Wen
    Chen, Guangzhou
    Wei, Ruizhong
    ARS COMBINATORIA, 2016, 127 : 167 - 183
  • [39] ALGORITHM-118 - MAGIC SQUARE (ODD ORDER)
    COLLISON, DM
    COMMUNICATIONS OF THE ACM, 1962, 5 (08) : 436 - 436
  • [40] Subsquare-free Latin squares of odd order
    Maenhaut, Barbara
    Wanless, Ian M.
    Webb, Bridget S.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) : 322 - 336