SAN: Learning Relationship Between Convolutional Features for Multi-scale Object Detection

被引:37
|
作者
Kim, Yonghyun [1 ]
Kang, Bong-Nam [2 ]
Kim, Daijin [1 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
[2] POSTECH, Dept Creat IT Engn, Pohang, South Korea
来源
关键词
Scale Aware Network; Object detection; Multi scale; Neural network; STATISTICS;
D O I
10.1007/978-3-030-01228-1_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of the recent successful methods in accurate object detection build on the convolutional neural networks (CNN). However, due to the lack of scale normalization in CNN-based detection methods, the activated channels in the feature space can be completely different according to a scale and this difference makes it hard for the classifier to learn samples. We propose a Scale Aware Network (SAN) that maps the convolutional features from the different scales onto a scale-invariant subspace to make CNN-based detection methods more robust to the scale variation, and also construct a unique learning method which considers purely the relationship between channels without the spatial information for the efficient learning of SAN. To show the validity of our method, we visualize how convolutional features change according to the scale through a channel activation matrix and experimentally show that SAN reduces the feature differences in the scale space. We evaluate our method on VOC PASCAL and MS COCO dataset. We demonstrate SAN by conducting several experiments on structures and parameters. The proposed SAN can be generally applied to many CNN-based detection methods to enhance the detection accuracy with a slight increase in the computing time.
引用
收藏
页码:328 / 343
页数:16
相关论文
共 50 条
  • [11] Multi-scale object detection in remote sensing imagery with convolutional neural networks
    Deng, Zhipeng
    Sun, Hao
    Zhou, Shilin
    Zhao, Juanping
    Lei, Lin
    Zou, Huanxin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 3 - 22
  • [12] Multi-scale Dilated Convolutional Neural Network for Object Detection in UAV Images
    Zhang R.
    Shao Z.
    Aleksei P.
    Wang J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (06): : 895 - 903
  • [13] A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
    Cai, Zhaowei
    Fan, Quanfu
    Feris, Rogerio S.
    Vasconcelos, Nuno
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 354 - 370
  • [14] Enhanced SSD with interactive multi-scale attention features for object detection
    Shuren Zhou
    Jia Qiu
    Multimedia Tools and Applications, 2021, 80 : 11539 - 11556
  • [15] Enhanced SSD with interactive multi-scale attention features for object detection
    Zhou, Shuren
    Qiu, Jia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11539 - 11556
  • [16] Multi-Scale Correlation Tracking with Convolutional Features
    Xu, Yulong
    Li, Yang
    Wang, Jiabao
    Zou, Shan
    Miao, Zhuang
    Zhang, Yafei
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 310 - 314
  • [17] Learn Discriminative Features for Small Object Detection through Multi-Scale Image Degradation with Contrastive Learning
    Tu, Xiaoguang
    He, Zhi
    Fu, Gui
    Liu, Jianhua
    Zhong, Mian
    Zhou, Chao
    Lei, Xia
    Yin, Juhang
    Huang, Yi
    Wang, Yu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2025, E108D (04) : 371 - 383
  • [18] MDFN: Multi-scale deep feature learning network for object detection
    Ma, Wenchi
    Wu, Yuanwei
    Cen, Feng
    Wang, Guanghui
    PATTERN RECOGNITION, 2020, 100
  • [19] MsEDNet: Multi-Scale Deep Saliency Learning for Moving Object Detection
    Patil, Prashant W.
    Murala, Subrahmanyam
    Dhall, Abhinav
    Chaudhary, Sachin
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 1670 - 1675
  • [20] Adaptive aerial object detection based on multi-scale deep learning
    Liu F.
    Han X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (05):