Enhanced SSD with interactive multi-scale attention features for object detection

被引:2
|
作者
Shuren Zhou
Jia Qiu
机构
[1] Changsha University of Science and Technology,School of Computer and Communication Engineering
来源
关键词
Object detection; SSD; Multi-scale feature; Attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
Single Shot MultiBox Detector (SSD) method using multi-scale feature maps for object detection, showing outstanding performance in object detection task. However, as a one-stage detection method, it’s difficult for SSD methods to quickly notice significant areas of objects in the image. In the SSD network structure, feature maps of different scales are used to independently predict object, and there is a lack of interaction between low-level feature maps and high-level feature maps. In this paper we propose an enhanced SSD method using interactive multi-scale attention features (MA-SSD). Our method uses the attention mechanism to generate attention features of multiple scales and adds it to the original detection branch of the SSD method, which effectively enhances the feature representation ability and improves the detection accuracy. At the same time, the feature of different detection scales interacts with each other, and all the detection branches in our method have a parallel structure, which ensures the detection efficiency. Our proposed method achieves competitive performance on the public dataset PascalVOC.
引用
收藏
页码:11539 / 11556
页数:17
相关论文
共 50 条
  • [1] Enhanced SSD with interactive multi-scale attention features for object detection
    Zhou, Shuren
    Qiu, Jia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11539 - 11556
  • [2] Salient Object Detection Using Multi-Scale Features with Attention Recurrent Mechanism
    Lu S.
    Guo Q.
    Wang R.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (12): : 1926 - 1937
  • [3] SSD-MSN: An Improved Multi-Scale Object Detection Network Based on SSD
    Chen, Zuge
    Wu, Kehe
    Li, Yuanbo
    Wang, Minjian
    Li, Wei
    IEEE ACCESS, 2019, 7 : 80622 - 80632
  • [4] Multi-scale attention-edge interactive refinement network for salient object detection
    Liang, Bocheng
    Luo, Huilan
    Wang, Janqin
    Shark, Lik-Kwan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 275
  • [5] Multi-scale Interactive Network for Salient Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    arXiv, 2020,
  • [6] Attention to the Scale : Deep Multi-Scale Salient Object Detection
    Zhang, Jing
    Dai, Yuchao
    Li, Bo
    He, Mingyi
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 105 - 111
  • [7] Multi-scale coupled attention for visual object detection
    Li, Fei
    Yan, Hongping
    Shi, Linsu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Multi-Scale Feature Attention-DEtection TRansformer: Multi-Scale Feature Attention for security check object detection
    Sima, Haifeng
    Chen, Bailiang
    Tang, Chaosheng
    Zhang, Yudong
    Sun, Junding
    IET COMPUTER VISION, 2024, 18 (05) : 613 - 625
  • [9] MULTI-SCALE SHARED FEATURES FOR CASCADE OBJECT DETECTION
    Lin, Zhe
    Hua, Gang
    Davis, Larry S.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1865 - 1868
  • [10] ScarfNet: Multi-scale Features with Deeply Fused and Redistributed Semantics for Enhanced Object Detection
    Hyeok, Yoo Jin
    Dongsuk, Kum
    Won, Choi Jun
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4505 - 4512