Student academic performance analysis using fuzzy C-means clustering

被引:0
|
作者
Rosadil, R. [1 ]
Akamal [1 ]
Sudrajat, R. [1 ]
Kharismawan, B. [2 ]
Hambali, Y. A. [3 ]
机构
[1] Padjadjaran State Univ, Dept Comp Sci, Sumedang 45363, Indonesia
[2] Padjadjaran State Univ, Dept Math, Sumedang 45363, Indonesia
[3] Inst Technol Bandung, STEL, Bandung 40132, Indonesia
关键词
D O I
10.1088/1757-899X/166/1/012036
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Grade Point Average (GPA) is commonly used as an indicator of academic performance. Academic performance evaluations is a basic way to evaluate the progression of student performance, when evaluating student's academic performance, there are occasion where the student data is grouped especially when the amounts of data is large. Thus, the pattern of data relationship within and among groups can be revealed. Grouping data can be done by using clustering method, where one of the methods is the Fuzzy C-Means algorithm. Furthermore, this algorithm is then applied to a set of student data form the Faculty of Mathematics and Natural Sciences, Padjadjaran University.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Fuzzy C-Means Clustering Using Asymmetric Loss Function
    Atiyah, Israa Abdzaid
    Mohammadpour, Adel
    Ahmadzadehgoli, Narges
    Taheri, S. Mahmoud
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (01): : 91 - 101
  • [22] Formulation of fuzzy c-means clustering using calculus of variations
    Miyamoto, Sadaaki
    Modeling Decisions for Artificial Intelligence, Proceedings, 2007, 4617 : 193 - 203
  • [23] Optimizing of Fuzzy C-Means Clustering Algorithm Using GA
    Alata, Mohanad
    Molhim, Mohammad
    Ramini, Abdullah
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 29, 2008, 29 : 224 - 229
  • [24] Fuzzy C-Means Clustering Using Asymmetric Loss Function
    Israa Abdzaid Atiyah
    Adel Mohammadpour
    Narges Ahmadzadehgoli
    S. Mahmoud Taheri
    Journal of Statistical Theory and Applications, 2020, 19 : 91 - 101
  • [25] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [26] Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means
    Afzal, Asif
    Ansari, Zahid
    Alshahrani, Saad
    Raj, Arun K.
    Kuruniyan, Mohamed Saheer
    Saleel, C. Ahamed
    Nisar, Kottakkaran Sooppy
    RESULTS IN PHYSICS, 2021, 29
  • [27] Image Segmentation Using a Modified Fuzzy C-Means Clustering
    Hajibabaei, Neda
    Firoozbakht, Mohsen
    2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 624 - 630
  • [28] Image segmentation using probabilistic fuzzy c-means clustering
    Pham, TD
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 722 - 725
  • [29] Analysis of spectroscopic imaging data by fuzzy C-means clustering
    Mansfield, JR
    Sowa, MG
    Scarth, GB
    Somorjai, RL
    Mantsch, HH
    ANALYTICAL CHEMISTRY, 1997, 69 (16) : 3370 - 3374
  • [30] Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
    Izakian, Hesam
    Abraham, Ajith
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1835 - 1838