Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means

被引:16
|
作者
Afzal, Asif [1 ]
Ansari, Zahid [2 ]
Alshahrani, Saad [3 ]
Raj, Arun K. [4 ]
Kuruniyan, Mohamed Saheer [5 ]
Saleel, C. Ahamed [3 ]
Nisar, Kottakkaran Sooppy [6 ]
机构
[1] Visvesvaraya Technol Univ, Dept Mech Engn, PA Coll Engn, Belagavi, Mangaluru, India
[2] Aligarh Muslim Univ, Univ Polytech, Elect Engn Sect, Aligarh, Uttar Pradesh, India
[3] King Khalid Univ, Dept Mech Engn, Coll Engn, POB 394, Abha 61421, Saudi Arabia
[4] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India
[5] King Khalid Univ, Dept Dent Technol, Coll Appl Med Sci, Asir Abha, Saudi Arabia
[6] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Al Kharj, Saudi Arabia
关键词
COVID-19; c-Means; Fuzzy c-means; Validity index; Location; FRAMEWORK;
D O I
10.1016/j.rinp.2021.104639
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are clustered. In the analysis, the maximum cluster size is treated as a variable and is varied from 5 to 50 in both algorithms to find out an optimum number. The performance and validity indices of the clusters formed are analyzed to assess the quality of clusters. The validity indices to understand all the COVID-19 clusters' quality are analysed based on the Zahid SC (Separation Compaction) index, Xie-Beni Index, Fukuyama-Sugeno Index, Validity function, PC (performance coefficient), and CE (entropy) indexes. The analysis results pointed out that five clusters were identified as a major centroid where the pandemic looks concentrated. Additionally, the observations revealed that mainly the pandemic is distributed easily at any global location, and there are several centroids of COVID-19, which primarily act as epicentres. However, the three main COVID-19 clusters identified are 1) cases with value <50,000, 2) cases with a value between 0.1 million to 2 million, and 3) cases above 2 million. These centroids are located in the US, Brazil, and India, where the rest of the small clusters of the pandemic look oriented. Furthermore, the Fc-M technique seems to provide a much better cluster than the c-M algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [2] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [3] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [4] Application of Hard C-means and Fuzzy C-means in data fusion
    Tang Ai-Hong
    Cai Li-An
    Zhang You-Mei
    DIGITAL MANUFACTURING & AUTOMATION III, PTS 1 AND 2, 2012, 190-191 : 265 - 268
  • [5] Fuzzy c-means clustering with prior biological knowledge
    Tari, Luis
    Baral, Chitta
    Kim, Seungchan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (01) : 74 - 81
  • [6] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    INFORMATION SCIENCES, 2025, 690
  • [7] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [8] A fuzzy C-means algorithm for optimizing data clustering
    Hashemi, Seyed Emadedin
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [9] Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (05) : 855 - 868
  • [10] Fuzzy C-means method for clustering microarray data
    Dembélé, D
    Kastner, P
    BIOINFORMATICS, 2003, 19 (08) : 973 - 980