Weighted Statistic in Detecting Faint and Sparse Alternatives for High-Dimensional Covariance Matrices

被引:13
|
作者
Yang, Qing [1 ]
Pan, Guangming [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Empirical spectral distribution; Faint alternative; Large random matrix theory; Linear spectral statistic; Sparse alternative; Stieltjes transform; LIKELIHOOD RATIO TESTS; NORMAL-DISTRIBUTIONS; EQUALITY;
D O I
10.1080/01621459.2015.1122602
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers testing equality of two population covariance matrices when the data dimension p diverges with the sample size n (p/n c > 0). We propose a weighted test statistic that is data-driven and powerful in both faint alternatives (many small disturbances) and sparse alternatives (several large disturbances). Its asymptotic null distribution is derived by large random matrix theory without assuming the existence of a limiting cumulative distribution function of the population covariance matrix. The simulation results confirm that our statistic is powerful against all alternatives, while other tests given in the literature fail in at least one situation. Supplementary materials for this article are available online.
引用
收藏
页码:188 / 200
页数:13
相关论文
共 50 条
  • [41] Estimation of two high-dimensional covariance matrices and the spectrum of their ratio
    Wen, Jun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 1 - 29
  • [42] Test on the linear combinations of covariance matrices in high-dimensional data
    Zhidong Bai
    Jiang Hu
    Chen Wang
    Chao Zhang
    Statistical Papers, 2021, 62 : 701 - 719
  • [43] Power computation for hypothesis testing with high-dimensional covariance matrices
    Lin, Ruitao
    Liu, Zhongying
    Zheng, Shurong
    Yin, Guosheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 10 - 23
  • [44] Homogeneity tests of covariance matrices with high-dimensional longitudinal data
    Zhong, Ping-Shou
    Li, Runze
    Santo, Shawn
    BIOMETRIKA, 2019, 106 (03) : 619 - 634
  • [45] Parallel computation of high-dimensional robust correlation and covariance matrices
    Chilson, James
    Ng, Raymond
    Wagner, Alan
    Zamar, Ruben
    ALGORITHMICA, 2006, 45 (03) : 403 - 431
  • [46] Homogeneity test of several covariance matrices with high-dimensional data
    Qayed, Abdullah
    Han, Dong
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (04) : 523 - 540
  • [47] Multi-sample test for high-dimensional covariance matrices
    Zhang, Chao
    Bai, Zhidong
    Hu, Jiang
    Wang, Chen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (13) : 3161 - 3177
  • [48] Block-diagonal test for high-dimensional covariance matrices
    Lai, Jiayu
    Wang, Xiaoyi
    Zhao, Kaige
    Zheng, Shurong
    TEST, 2023, 32 (01) : 447 - 466
  • [49] TEST FOR BANDEDNESS OF HIGH-DIMENSIONAL COVARIANCE MATRICES AND BANDWIDTH ESTIMATION
    Qiu, Yumou
    Chen, Song Xi
    ANNALS OF STATISTICS, 2012, 40 (03): : 1285 - 1314
  • [50] Test on the linear combinations of covariance matrices in high-dimensional data
    Bai, Zhidong
    Hu, Jiang
    Wang, Chen
    Zhang, Chao
    STATISTICAL PAPERS, 2021, 62 (02) : 701 - 719