Weighted Statistic in Detecting Faint and Sparse Alternatives for High-Dimensional Covariance Matrices

被引:13
|
作者
Yang, Qing [1 ]
Pan, Guangming [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Empirical spectral distribution; Faint alternative; Large random matrix theory; Linear spectral statistic; Sparse alternative; Stieltjes transform; LIKELIHOOD RATIO TESTS; NORMAL-DISTRIBUTIONS; EQUALITY;
D O I
10.1080/01621459.2015.1122602
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers testing equality of two population covariance matrices when the data dimension p diverges with the sample size n (p/n c > 0). We propose a weighted test statistic that is data-driven and powerful in both faint alternatives (many small disturbances) and sparse alternatives (several large disturbances). Its asymptotic null distribution is derived by large random matrix theory without assuming the existence of a limiting cumulative distribution function of the population covariance matrix. The simulation results confirm that our statistic is powerful against all alternatives, while other tests given in the literature fail in at least one situation. Supplementary materials for this article are available online.
引用
收藏
页码:188 / 200
页数:13
相关论文
共 50 条
  • [31] Hypothesis testing for the identity of high-dimensional covariance matrices
    Qian, Manling
    Tao, Li
    Li, Erqian
    Tian, Maozai
    STATISTICS & PROBABILITY LETTERS, 2020, 161
  • [32] Testing the equality of multiple high-dimensional covariance matrices
    Shen J.
    Results in Applied Mathematics, 2022, 15
  • [33] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [34] ADAPTIVE TESTS FOR BANDEDNESS OF HIGH-DIMENSIONAL COVARIANCE MATRICES
    Wang, Xiaoyi
    Xu, Gongjun
    Zheng, Shurong
    STATISTICA SINICA, 2023, 33 : 1673 - 1696
  • [35] High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure
    Ke, Yuan
    Lian, Heng
    Zhang, Wenyang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 96 - 110
  • [36] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [37] Testing proportionality of two high-dimensional covariance matrices
    Cheng, Guanghui
    Liu, Baisen
    Tian, Guoliang
    Zheng, Shurong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [38] Semi-proximal augmented lagrangian method for sparse estimation of high-dimensional inverse covariance matrices
    Wu C.
    Xiao Y.
    Li P.
    Journal of Applied and Numerical Optimization, 2020, 2 (02): : 155 - 169
  • [40] High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models
    Janzamin, Majid
    Anandkumar, Animashree
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 1549 - 1591