Soil Moisture Inversion Using AMSR-E Remote Sensing Data: An artificial neural network approach

被引:6
|
作者
Xie, Xingmei [1 ]
Xu, Jingwen [1 ]
Zhao, Junfang [2 ]
Liu, Shuang [1 ]
Wang, Peng [1 ]
机构
[1] Sichuan Agr Univ, Coll Resources & Environm, Chengdu 611130, Peoples R China
[2] Chinese Acad Sci, Chinese Acad Metrolog Sci, Beijing 100008, Peoples R China
关键词
Artificial neural network approach; soil moisture retrieval; AMSR-E;
D O I
10.4028/www.scientific.net/AMM.501-504.2073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this work artificial neural network with a back-propagation learning algorithm (BPNN) is employed to solve soil moisture retrieval for Sichuan Middle Hilly Area in China. Eighteen kinds of BPNN models have been developed using AMSR-E observations to retrieve soil moisture. The results show that the 18.7GHz band has some positive effect on improving soil moisture estimation accuracy while the 36.5GHz may interfere with deriving soil moisture, and vertical brightness temperature has a closer relationship with observed near-surface soil moisture than horizontal TB. The BPNN model driven by vertical and horizontal TB dataset at 6.9GHz and 10.7GHz frequency has the best performance of all the BPNN models withr value of 0.4968 and RMSE 10.2976%. Generally, the BPNN model is more suitable for soil moisture estimation than NASA product for the study area and can provide significant soil moisture information due to its ability of capturing non-linear and complex relationship.
引用
收藏
页码:2073 / +
页数:2
相关论文
共 50 条
  • [41] Sea ice remote sensing using AMSR-E 89-GHz channels
    Spreen, G.
    Kaleschke, L.
    Heygster, G.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C2)
  • [42] Surface temperature effect on soil moisture retrieval from AMSR-E
    Guo, Ying
    Shi, Jiancheng
    Mao, Kebiao
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1192 - 1195
  • [43] Remotely Sensed Soil Moisture over Australia from AMSR-E
    Draper, C. S.
    Walker, J. P.
    Steinle, P. J.
    de Jeu, R. A. M.
    Holmes, T. R. H.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 1756 - 1762
  • [44] A comparison of in situ precipitation with soil moisture retrieved from AMSR-E
    Mikai, H
    Arai, Y
    Mutoh, T
    Imaoka, K
    Shibata, A
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3460 - 3461
  • [45] Evaluation of AMSR-E——Derived Soil Moisture over Northern China
    ZHANG An-Zhi 1
    Atmospheric and Oceanic Science Letters, 2011, 4 (04) : 223 - 228
  • [46] Comparison between SPI and soil moisture retrieved from AMSR-E
    Xu, Jingwen
    Zhao, Junfang
    Wang, Yupeng
    Chen, Qionglian
    Zeng, Liwei
    ADVANCED MATERIALS AND PROCESSES III, PTS 1 AND 2, 2013, 395-396 : 511 - +
  • [47] ANALYSIS OF 7 YEARS AQUA AMSR-E DERIVED SOIL MOISTURE DATA OVER INDIA
    Rao, Y. S.
    Chaudhari, A. A.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1788 - 1791
  • [48] RETRIEVING SURFACE SOIL MOISTURE FROM MODIS AND AMSR-E DATA: A CASE STUDY IN TAIWAN
    Chen, C. F.
    Lin, Y. J.
    Chang, L. Y.
    Son, N. T.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 379 - 383
  • [49] The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E
    van der Schalie, R.
    de Jeu, R. A. M.
    Kerr, Y. H.
    Wigneron, J. P.
    Rodriguez-Fernandez, N. J.
    Al-Yaari, A.
    Parinussa, R. M.
    Mecklenburg, S.
    Drusch, M.
    REMOTE SENSING OF ENVIRONMENT, 2017, 189 : 180 - 193
  • [50] Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization
    Liu, Qixin
    Gu, Xingfa
    Chen, Xinran
    Mumtaz, Faisal
    Liu, Yan
    Wang, Chunmei
    Yu, Tao
    Zhang, Yin
    Wang, Dakang
    Zhan, Yulin
    SENSORS, 2022, 22 (04)